

Applied Gas, Inc.

At Applied Gas, we are dedicated to providing our customers with the superior specialty gas mixtures and support which enable them to achieve high quality and efficient results. Our internally developed manufacturing, analytical, and software solutions are unique and result in our ability to safely meet customer delivery schedules in a timely and when required, expedited, fashion. We believe in maintaining open and honest communication with our customers and vendors throughout the order process. Applied Gas employees have safety and customer satisfaction as their primary goals. We take pride in meeting these expectations everyday.

We are here for you.....

At Applied Gas, Inc. we take a great deal of pride in what we do, both personally and profes-

sionally, and we view every client and job as a personal challenge to achieve perfection. We have a

passion for our work and truly enjoy helping people address their technological needs. From analyti-

cal and process applications to research and development requirements, reliable customer service,

production, delivery and technical support are our bottom line. It gives us a great sense of accom-

plishment knowing that a job was done well.

As a leading supplier of custom specialty gas mixtures, advanced order management, sophis-

ticated software, proven analytical instrumentation and reliable production equipment are only a

few of the systems employed in the quality control and assurance that provides products to meet the

demands of our customers.

Our employees understand that on occasion a customer may have a special circumstance that

would require our products on a expedited basis. Our dedicated staff will work holidays, weekends

and overtime to provide custom products as quickly as possible. We will ship products by air freight,

express local delivery or any other means possible in order to meet shipping dates.

Please feel free to contact us by...

phone: (979) 922-1804

fax: (979) 922-1805

e-mail: sales@appliedgas.com

mail: Applied Gas, Inc.

P.O. Box 939.

Alvin, Tx. 77551

Applied Gas, Inc.i

ph: (979) 922-1804 | fax: (979) 922-1805 | www.appliedgas.com | sales@appliedgas.com

Terms and conditions

All prices are in U.S. dollars, Ex-works our shipping point. The prices published in this catalog are appropriate as of the date of its printing and are subject to change without further notice. Prices do not include federal, state or local taxes. Sales taxes or other applicable taxes will be charged unless a current valid exemption certificate is provided. Credit will not be given under any circumstances without prior approval for any products returned to Applied Gas, Inc. Restocking or cancellation fees may be instituted for changes or cancellations of an order at the discretion of Applied Gas, Inc.

Buyer acknowledges; there are hazards associated with the use of the product; Buyer understands such hazards; it is the responsibility of Buyer to warn and protect its employees and all others exposed to such hazards in use and in storage of the product. Buyer shall hold harmless, indemnify, and defend Seller from and against any liability incurred by Seller because such warnings were not made. Buyer assumes all risk and liability for loss, damages or injury to persons or to property of Buyer or others arising out of the presence or use of the product. Seller shall not be liable in contract or tort for any other direct or any indirect, special, incidental, consequential or contingent damages arising out of its performance or non-performance.

This warranty is exclusive and Seller makes no other warranty, express or implied, including any implied warranty of merchantability. Seller shall not be liable for any special, incidental, consequential or contingent damages. The burden of safe usage of products sold by the Seller rests solely with the Buyer. Seller directs the attention of the Buyer to the hazards listed in this catalog but assumes no liability for the accuracy or completeness of any information supplied Seller shall not be liable for , special, incidental, consequential or contingent damages arising from the non-willful failure to deliver products or deliver products by an express or implied time.

All cylinders, caps, valves and fitting provided in connection with a product remain the property of Applied Gas, Inc. No one may refill any cylinder owned by Applied Gas, Inc. without prior approval as per the code of federal regulations part 49.

The Applied Gas Advantage

The mixed gas business can be frustrating, time consuming, and costly if you do not have a company that understands your needs. Applied Gas will invest the time to make sure that the experience with us will be as simple as turning on the lights. With over 50 years of experience in the industry we have assembled this company to make mix procurement, and delivery user friendly. Please read below to see if some of our solutions can resolve your current issues.

- Pricing consistency
- Technical support
- On time delivery*
- Reorder notification
- Delivery status via website
- Specialized labeling
- On line cert capabilities
- Raw material qualification
- NIST traceable reporting
- Order forms specific to your request for ease of ordering
- Specialty gas equipment
- Quotes provide within 24 hours on routine requests
- One call customer service
- No annual price increases to boost profits
- Global shipping capabilities
- E-mail, fax, or phone ordering
- Lab surveys at no cost to the customer
- Easy to read invoices and delivery tickets Professional, and courteous service

For more details please feel free to contact us...

TABLE OF CONTENTS

CYLINDER DATA:

Pure Gas:

GAS MIXTURES:

GAS HANDLING EQUIPMENT:

Custom mixtures

As a leading supplier of custom specialty gas mixtures, advanced order management, sophisticated software, proven analytical instrumentation and reliable production equipment are only a few of the systems employed in the quality control and assurance that provides products to meet the demands of our customers. Custom mixtures are currently prepared by either volumetric or gravimetric techniques. Applied Gas, Inc. clearly states the methods utilized to prepare custom mixtures under "Standard Specifications".

Ordering a mixture

The virtually unlimited possible combination of components and concentrations makes the ordering of a custom mixture a crucial process in obtaining the appropriate mixture for the user's satisfaction. Possible steps to help customers through this process are outlined below.

- 1. Determine the components and their concentrations.
- 2. Determine the component to be added as the balance material.

 Note: If the balance material has an actual requested concentration the sum of all component concentrations should equal 100%.
- 3. Determine the required "Make Tolerance" and "Certification Accuracy" from the standard "Mixture Tolerances" table on the page 14 or state your own required tolerances.
- 4. State the unit of measure (i.e. weight percent, mole percent, or liquid volume percent).
- 5. Determine the desired cylinder size or indicate the desired quantity of product. (See the table at the begin of this catalog)
- 6. Indicate the desired shipment date and the preferred carrier and mode: air, motor freight, etc...

Should you have difficulty in determining any of the above your customer service representative will be glad to assist you.

Capabilities

Refinery standards: Refinery Gas Standards, ASTM D3710, ASTM D2887, Hydrogen Sulfide standards, and other mixtures useful in the gasoline refinery.

Petrochemical standards: An unlimited combination of components and concentrations make a comprehensive listing of calibration mixtures utilized in the laboratory and process control impossible. A partial listing of components and concentrations follows:

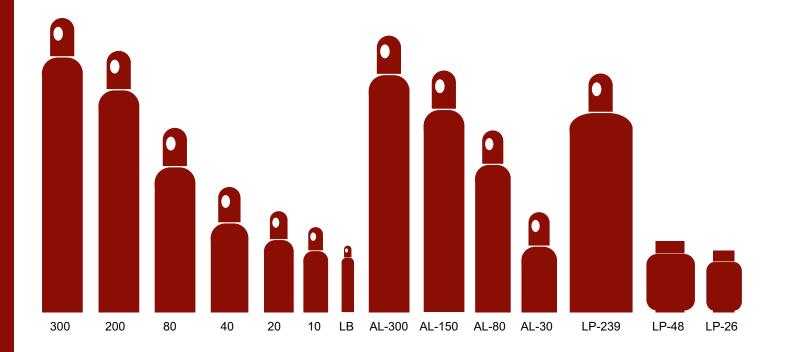
Propylene standards: Percent to part per million Methane, Ethane, Propane, Hydrogen, Carbon Dioxide, Carbon Monoxide, Hydrogen Sulfide, Carbonyl Sulfide, Methyl Acetylene, Propadiene, Cyclopropane, and other minor components.

Ethylene standards: Percent to parts per million Methane, Ethane, Oxygen, Nitrogen, Hydrogen, Carbon Dioxide, Carbon Monoxide, and other minor components.

1,3-Butadiene standards: Percent to parts per million Methane, Ethane, Ethylene, Propylene, Cis 2 Butene, Trans 2 Butene, 1 Butene, Isobutylene, 1,2 Butadiene, Methyl Acetylene, Propadiene, Vinyl Acetylene, and other minor components.

Natural gas standards: GPA Reference, Calorimetric, BTU Reference, High Ethane, Natural gas processing and custom gas and liquid mixtures.

Liquid standards: Percent to parts per million Benzene, Toluene, Ethyl Benzene, Xylenes, Cumene, MTBE, TAME, Styrene Alcohols, Ethers, and Ketones. ASTM D3710, ASTM D2887, ASTM D5399 and other ASTM calibration mixtures including Piston Cylinder mixtures.


Sulfur standards: Percent to parts per million Hydrogen Sulfide, Carbonyl Sulfide, Methyl Mercaptan, Ethyl Mercaptan, Methyl Sulfide, Dimethyl Sulfide, Ethyl Sulfide, and Thiophene.

Fugitive emission standards: Methane in Air and Hexane in Air, HRVOC mixtures.

Air monitoring standards: Percent to parts per million Nitric Oxide, Sulfur Dioxide, Oxygen, Nitrogen Dioxide, and Total

Cylinder cross-reference

Applied Gas	Airgas	Air Liquide	Air Products	Matheson	Praxair	Scott
300	300	49	A	1L	T	K
200	200	44	В	1A	K	A
80	80	16	С	2	Q	В
40	40		D		F	
20	20	7	D1		G	C
LB	LB	LB	LB	LB	LB	LB
AL-300	AL300		AAL		AT	
AL-150	AL150	30AL	BAL	1R	AS	AL
AL-80	AL80	16AL	CAL	2R	AQ	BL
AL-30	AL30	7AL	D1AL	3R	AH	CL
AL-5			4XAL	6R		
LP-239	350	110	A1	1F	FX	XL
LP-48	LP5	LP5	LP5		LP5	
LP-26			LP2.5			
LP-48AL	LP5AL		LP5AL	·		·

Cylinder data

	Cylinder	Nominal	Water	DOT	O.D.	Length
	size	Weight (lbs/kg)	Capacity (lbs/ltr)	Designation	(in / mm)	(in / mm)
	300	135 / 61.3	110 / 49	3AA-2400	10 / 254	60 / 1524
	200	115 / 52.2	96 / 44	3AA-2015	9 / 229	57 / 1448
High	80	45 / 20.4	38 / 16	3AA-2015	7 / 178	31 / 788
pressure steel	40	26 / 11.8	19 / 7.9	3AA-2015	7 / 178	18 / 457
	20	11 / 5	10 / 4	3AA-2015	5 / 133	14 / 355
	LB	2/1	1/0.45	3A-1800	2 / 51	15 / 381
	AL-150	52 / 23.6	65 / 30	3AL-2015	8 / 204	54 / 1372
High	AL-80	33 / 15	34.6 / 15.7	3AL-2216	7 / 178	39 / 991
pressure aluminum	AL-30	19 / 8.6	13 / 5.9	3AL-2216	7 / 178	21 / 533
	AL-5	2.1 / 0.95	2.2 / 1.02	3AL-2015	3.2 / 81	11.7 / 298
	LP-239	72 / 32.7	239 / 110	4BW-240	15 / 381	50 / 1270
Low pressure steel	LP-48	18 / 8.2	48 / 21.8	4BW-240	12 / 305	19 / 493
	LP-26	13 / 5.9	26 / 11.8	4BW-240	10 / 254	16/407
Low pressure	LP-48AL	13 / 5.9	48 / 21.8	4E-240	21 / 533	21/533
aluminum	LP-26AL	10 / 4.5	24 / 10.9	4E-240	10 / 254	16/254



Cylinder suffixes

Suffix	Valve type
none	Brass
S	Stainless steel
dt	Brass with dip-tube
dp	Brass with pressurizing port and dip-tube
dps	Stainless steel with pressurizing port and dip-tube

Hydrostatic test pressures

DOT	Test pressure
Designation	(psig / kg/cm2)
3AA-2400	4000 / 281
3AA-2015	3360 / 236
3AL-2015	3360 / 236
4BW-240	480 / 34

Some components available in custom mixtures

1-BUTENE 1,2 BUTADIENE 1,3 PENTADIENE 1-PENTENE 2-HEXENE 2-BUTANONE

2-METHYL 1 BUTENE 2-METHYL PENTANE 2,3 DIMETHYLBUTANE 3-METHYL HEPTANE

ACETONE

ALLYL CHLORIDE BENZENE

CARBON DIOXIDE CARBONYL SULFIDE CHLOROFORM CIS-2-PENTENE CYCLOHEPTANE

DECANE

CYCLOHEXENE

DIBROMODIFLUOROMETHANE

DIETHYL SULFIDE DIMETHYL ETHER DODECANE ETHANOL ETHYL ACRYLATE ETHYL CHLORIDE ETHYL MERCAPTAN HALOCARBON 11 HALOCARBON 114

HALOCARBON 12

HALOCARBON 142B

HALOCARBON 22 HEPTANE

HYDROGEN CHLORIDE ISOBUTYL MERCAPTAN

ISOPROPANOL KRYPTON **METHANETHIOL** METHYL ACETYLENE METHYL CYCLOHEPTANE METHYL DISULFIDE METHYL HEPTANE METHYL SULFIDE

NITROGEN NONANE OCTANE OXYGEN PENTANE

PERFLUORO- 2-BUTENE

PROPADIENE PROPYL BENZENE PROPYLENE

SEC BUTYL ALCOHOL SULFUR DIOXIDE TERT BUTYL ALCOHOL TERT BUTYL METHYL ETHER TETRACHLOROETHYLENE TETRAHYDROFURAN

TOLUENE

TRANS-2-PENTENE TRICHLOROETHYLENE 1-BUTYNE

1,2 DIBROMOMETHANE 1,4 DIETHYLBENZENE 2,2,4 TRIMETHYLPENTANE 2-METHYL HEPTANE

2-BUTYNE

2-METHYL-2-BUTENE 2,2 DIMETHYLBUTANE 2,4 DIMETHYLHEXANE 3-METHYL HEXANE ACETONITRILE AMMONIA

CARBON MONOXIDE

CHLORINE

BUTANE

CHLOROTRIFLUROETHYLENE

CUMENE

CYCLOHEXANE CYCLOPENTENE DEUTERIUM DIETHYL ETHER DIETHYLAMINE DIMETHYAMINE **EICOSANE** ETHYL ACETATE

ETHYL BENZENE ETHYL FORMIDE ETHYLENE

HALOCARBON 113 HALOCARBON 115 HALOCARBON 13 HALOCARBON 152A **HALOCARBON 23** HYDROGEN **ISOBUTANE** ISOPENTANE

ISOPROPYLACETATE

M-XYLENE METHANOL

METHYL BROMIDE METHYL CYCLOHEXANE METHYL ETHYL KETONE

METHYL IODIDE

NEON

NITROGEN DIOXIDE

O-XYLENE P-XYLENE

PERFLUOROPROPANE

PROPANE

PROPYL MERCAPTAN PROPYLENE OXIDE

STYRENE

SULFUR HEXAFLUORIDE TERT BUTYL MERCAPTAN TETRACHLORETHYLENE

TETRACOSANE THIOPHENE TRANS-2-BUTENE TRICHLORETHANE

TRICHLOROFLUOROMETHANE

1-PROPANOL 1,3 BUTADIENE 1,4 PENTADIENE

2,3,5 TRIMETHYLHEXANE 2-ETHYL-1-BUTENE 2-CHLOROPROPANE 2-METHYL HEXANE 2,2 DIMETHYLPROPANE 3-METHYL-1-BUTENE **ACETALDEHYDE**

ALLENE ARGON

BUTYL ALCOHOL

CARBON TETRACHLORIDE CHLORODIFLUROMETHANE

CIS-2-BUTENE CYCLOBUTANE CYCLOHEXANOL CYCLOPROPANE DICHLOROMETHANE DIETHYL KETONE DIMETHYL DISULFIDE DIMETHYL SULFIDE

ETHANE

ETHYL ACETYLENE ETHYL BROMIDE ETHYL IODIDE ETHYLENE OXIDE HALOCARBON 1132A HALOCARBON 116 HALOCARBON 1301 HALOCARBON 21

HELIUM

HYDROGEN BROMIDE ISOBUTYL ALCOHOL

ISOPRENE

ISOPROPYLSULFIDE

METHANE

METHYL ACETATE METHYL CHLORIDE METHYL CYCLOPENTANE METHYL FORMATE METHYL MERCAPTAN

NEOPENTANE NITRIC OXIDE NITROUS OXIDE

Mixture type	Requested concentration (From-To)	Manufacturing tolerances	Certification accuracies
	5-100 PPM	+/-10 %	+/-1 %
Master	101-5000 PPM	+/-5 %	+/-1 %
	0.5%-UP	+/-2 %	+/-1 %
	5-100 PPM	+/-15 %	+/-1 %
Primary	101-5000 PPM	+/-5 %	+/-1 %
	0.5%-UP	+/-2 %	+/-1 %
	< 100 PPB	+/-30 %	+/-20 %
	101-999 PPB	+/-20 %	+/-10 %
Certified	1-4.9 PPM	+/-20 %	+/-5 %
	5-100 PPM	+/-20 %	+/-2 %
	101-5000 PPM	+/-10 %	+/-2 %
	0.5%-UP	+/-5 %	+/-2 %

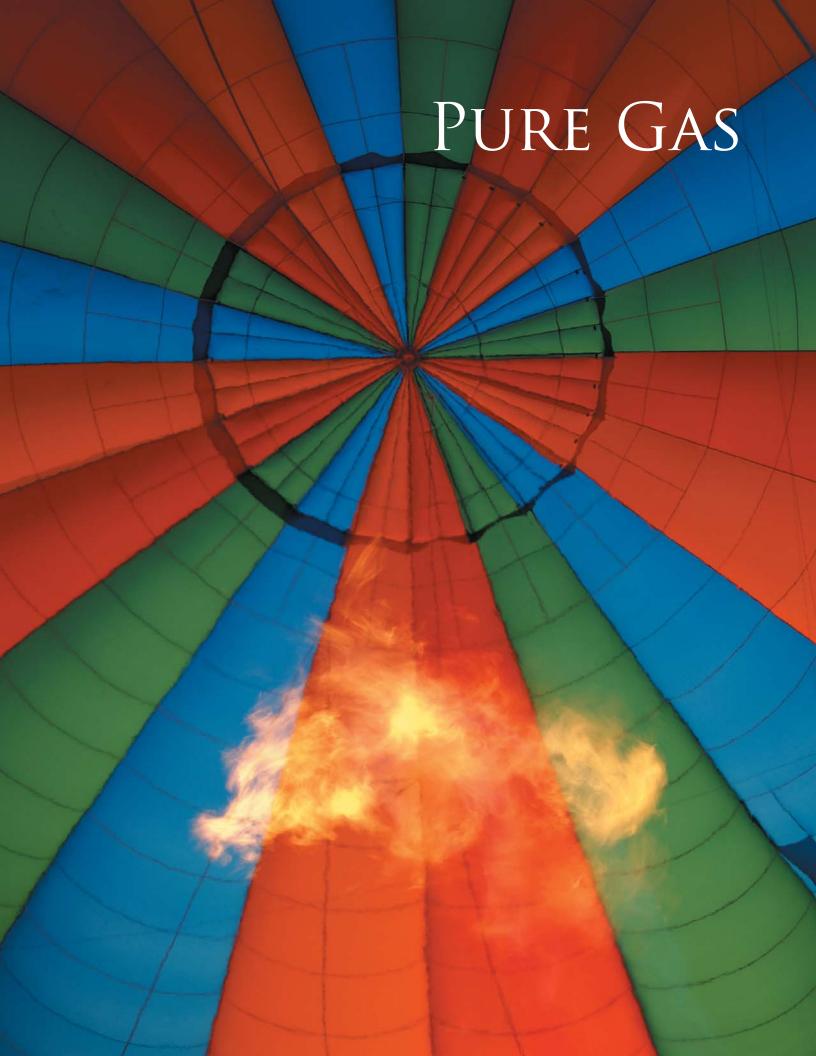
Applied Gas can also offer Gravimetric and Unanalyzed mixtures upon request.

Note: Blend tolerance and analytical accuracy may vary depending on the specific component, cylinder size, and other factors specific to an individual mixture. Manufacturing tolerances and Certification accuracies are expressed as relative deviation from the requested concentration of the individual component.

Specifications

Master standard:

Manufactured gravimetrically on high capacity, high precision balances and all components analyzed by gas chromatography or other suitable analytical methodology. Both gravimetric and analytical values must agree within the stated certification accuracy.


Primary standard:

Manufactured gravimetrically on high capacity, high precision balances and analyzed by gas chromatography or other suitable analytical methodology where reactive components or mass weights are not sufficient to certify to the stated accuracy.

Certified standard:

Manufactured gravimetrically on high capacity, high precision balances, volumetrically or by partial pressure techniques and analyzed by gas chromatography or other suitable analytical methodology where necessary to certify to the stated accuracy.

Air (Synthetic, not for breathing)

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Ultra Zero	300	310	2655
	200	230	2215
Zero	300	310	2655
	200	230	2215

*other sizes are available upon request

Notes:	
Recommended Regulator : LABE-3-Delivery pressure-590	

Technical Specifications

Molecular Weight	28.96
Boiling Point	-317.8 F (-194.3 C)
Specific Volume	13.3cf/lb (0.833m3/kg)
Critical Temperature	-221.1 F (-140.6 C)
Critical Pressure	546.8 psia
Lower Flammable Limits	Non-Flammable
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
-	

Shipping Information

CGA..... 590

DOT Name	Air, Compressed
Hazard Class	2.2
ID/UN Number	UN1002
DOT Label	Non-Flammable Gas
CAS Number	132259-10-0
Reportable Quantity	N/A

Allene | H2C=C=CH2

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 1.5	LP-26	4540	116
95%	LB	227	116
	LB	100	116

*other sizes are available upon request Please specify Gas or Liquid with-drawl Please check availability

Notes:			

Technical Specifications

Molecular Weight	40.07
Boiling Point	-30.1 F (-34.5 C)
Density	4.999 lbs/gal @ 60 F
Critical Temperature	248.0 F (120 C)
Critical Pressure	793.36 psia
Lower Flammable Limits	1.5 %
Toxicity	Simple asphyxiant
Compatibility	Most metals
CGA	510 (LB : 110)

DOT Name	Propadiene, Inhibited
Hazard Class	2.1
ID/UN Number	UN2200
DOT Label	Flammable Gas
CAS Number	463-49-0
Reportable Quantity	N/A

Argon

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 5.0	300	330	2655
99.999%	200	250	2215
Grade 4.8	300	330	2655
99.998%	200	250	2215

^{*}other sizes are available upon request

No	otes:
Rec	commended Regulator: LABE-3-Delivery pressure -580

Technical Specifications

Molecular Weight	39.95
Boiling Point	-302.6 F (-185.9 C)
Specific Volume	9.7 cf/lb (0.604 m3/kg)
Critical Temperature	-188.1 F (-122.4 C)
Critical Pressure	710 psia
Lower Flammable Limits	Non-Flammable
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	580

Shipping Information

DOT Name	Argon, Compressed
Hazard Class	2.2
ID/UN Number	UN1066
DOT Label	Non-Flammable Gas
CAS Number	7440-37-1
Reportable Quantity	N/A

1,2-Butadiene | н2C=CHCH=CH2

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 1.7	LB	227	34 34
9/%	LB	100	34

*other sizes are available upon request Please specify Gas or Liquid with-drawl Please check availability

Notes:			

Technical Specifications

Molecular Weight	54.09
Boiling Point	51.53 F (10.85 C)
Density	5.482 lbs/gal @ 60 F
Critical Temperature	339.53 F (170.85 C)
Critical Pressure	652.67 psia
Lower Flammable Limits	2.0 %
Toxicity	
Compatibility	Most metals
CGA	110

DOT Name	Butadienes, Inhibited
Hazard Class	2.1
ID/UN Number	UN1010
DOT Label	Flammable Gas
CAS Number	590-19-2
Reportable Quantity	N/A

1,3-Butadiene

H2C=CHCH=CH2

Purity	Cylinder Size	Contents (pounds)	Pressure (psia)
Grade 2.5	LP-239dt	100	36
99.5%	LP-26dt	10	36
Grade 2	LP-239dt	100	36
99.0%	LP-26dt	10	36

Purity excludes dimer

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight..... 54.09

Boiling Point...... 24.06 F (-4.4 C) Density...... 5.230 lbs / gal @ 60 F Critical Temperature...... 306 F (152.2 C)

Critical Pressure...... 628 psia Lower Flammable Limits..... 2.0 % Toxicity...... TLV 10 ppm Compatibility..... Most metals

CGA..... 510

Shipping Information

DOT Name..... Butadienes, Inhibited

Hazard Class..... ID/UN Number..... UN1010 DOT Label..... Flammable Gas CAS Number..... 106-99-0 Reportable Quantity..... 10 lbs (4.54 kg)

n-Butane

H3CCH2CH2CH3

Purity	Cylinder	Contents	Pressure
	Size	(pounds)	(psia)
Grade 2.5	LP-239dt	100	31
99.5%	LP-26dt	10	31
Grade 2	LP-239dt	100	31
99.0%	LP-26dt	10	31

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Notes:

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight..... 58.123 Density...... 4.869 lbs/gal @ 60 F

Critical Pressure...... 550.6 psia Lower Flammable Limits..... 1.8 % Toxicity..... TLV 800 ppm

Compatibility..... Most metals

CGA..... 510

Shipping Information

DOT Name..... Butane Hazard Class..... 2.1 ID/UN Number..... UN1011 DOT Label..... Flammable Gas CAS Number..... 106-97-8 Reportable Quantity.....

1-Butene

H2C=CHCH2CH3

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 2	LP-239dt	100	38
99 %	LP-26dt	10	38

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Notes:

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Lower Flammable Limits..... 1.6 % Toxicity.....

Compatibility..... Most metals

CGA...... 510

Shipping Information

DOT Name	Butylene
Hazard Class	2.1
ID/UN Number	UN1012
DOT Label	Flammable Gas
CAS Number	106-98-9
Reportable Quantity	N/A

cis-2-Butene

H3CHC=CHCH3

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
	LP-239dt	45400* ²	28
Grade 2	LP-48dt	4540	28
98+%	LB	227	28
	LB	100	28

*other sizes are available upon request

Please check price and availability. Price subject to change without notice.

Please specify Gas or Liquid with-drawl

Notes:

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight...... 56.12

Lower Flammable Limits..... 1.7 %
Compatibility...... Most metals

CGA...... 510 (LB : 110)

DOT Name	Butylene
Hazard Class	2.1
ID/UN Number	UN1012
DOT Label	Flammable Gas
CAS Number	590-18-1
Reportable Quantity	N/A

trans-2-Butene

Н3СНС=СНСН3

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
	LP-239dt	45400* ²	28
Grade 2	LP-48dt	4540	28
98+ %	LB	227	28
	LB	100	28
			1

*other sizes are available upon request

Please check price and availability. Price subject to change without notice.

Please specify Gas or Liquid with-drawl
Notes:
Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight..... Density...... 5.095 lbs/gal @ 60 F Critical Pressure...... 595 psia Lower Flammable Limits..... 1.7 % 28 Compatibility..... Most metals

CGA...... 510 (LB : 110)

Shipping Information

DOT Name	Butylene
Hazard Class	2.1
ID/UN Number	UN1012
DOT Label	Flammable Gas
CAS Number	624-64-6
Reportable Quantity	N/A

Carbon dioxide | co2

Purity	Cylinder	Contents	Pressure
	Size	(pounds)	(psia)
Grade SFC 99.99 %	AL-150dt	35	845
Grade 2	200dt	50	845
99 %	200	50	845

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Notes:

Recommended Gas Regulator: SG9012-320-320

Teflon washer (package of 25)

Technical Specifications

Molecular Weight..... 44.01 Boiling Point..... -109.12 F (-78.4 C) Density...... 6.82 lbs/gal @ 60 F Critical Temperature...... 87.91 F (31.06 C) Critical Pressure...... 1071 psia Flammable Limits...... Non-flammable Toxicity..... TLV 10,000 ppm Moisture promotes Compatibility..... corrosion

CGA...... 320

Shipping Information

DOT Name..... Carbon dioxide Hazard Class..... ID/UN Number..... UN1013 DOT Label..... Non Flammable CAS Number..... 124-38-9 Reportable Quantity.....

Carbon monoxide | a

(7	()

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 4	300	240	2015
99.99 %	200	176	1665
Grade 3	300	240	2015
99.9 %	200	176	1665

*other sizes are available upon request

Notes:	
Recommended Regulator: LABE-3-Delivery pressure -350	

Technical Specifications

Molecular Weight	28.01
Boiling Point	-312.7 F (-191.5 C)
Specific Volume	13.8cf/lb (0.862m3/kg
Critical Temperature	-220.41 F (-140.2 C)
Critical Pressure	507.45 psia
Lower Flammable Limits	12.5 %
Toxicity	TLV 50 ppm
Compatibility	Can be corrosive
CGA	350 (LB:110)

Shipping Information

	Carbon monoxide,
DOT Name	compressed
Hazard Class	2.3 Zone D
ID/UN Number	UN1016
DOT Label	Inhalation hazard,
	Flammable Gas
CAS Number	74-84-0
Reportable Quantity	N/A

Ethane | нзсснз

Purity	Cylinder Size	Contents (pounds)	Pressure (psia)
Grade 2	200dt	30	558
99 %	200	30	558

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Notes:	
Recommended Gas Regulator: LABE-3-Delivery pressure-350	

Technical Specifications

Molecular Weight	30.07
Boiling Point	-127.5 F (-88.6 C)
Density	2.97 lbs/gal @ 60 F
Critical Temperature	89.92 F (32.18 C)
Critical Pressure	706.5 psia
Lower Flammable Limits	3 %
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive

Shipping Information

CGA...... 350

DOT Name	Ethane
Hazard Class	2.1
ID/UN Number	UN1035
DOT Label	Flammable Gas
CAS Number	74-84-0
Reportable Quantity	N/A

Ethyl acetylene | снзсн2с=сн

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 1.5	LP-26dt	4540	23
95 %	LB	227	23
	LB	100	23

*other sizes are available upon request Please check availability

Notes:	

Technical Specifications

Molecular Weight	54.09
Boiling Point	46.53 F (8.07 C)
Density	3.481 lbs/gal @ 60 I
Critical Temperature	374.9 F (190.5 C)
Critical Pressure	683.13 psia
Lower Flammable Limits	1.6 %
Toxicity	
Compatibility	Most metals, except copper
CGA	510 (LB: 110)

Shipping Information

DOT Name	Ethylacetylene
Hazard Class	2.1
ID/UN Number	UN2452
DOT Label	Flammable Gas
CAS Number	107-00-6
Reportable Quantity	N/A

Ethylene | H2C=CH2

Purity	Cylinder	Contents	Pressure
	Size	(pounds)	(psia)
Grade 3	300	35	1215
99.9 %	200	30	1215
Grade 2	300	37	1215
99 %	200	30	1215

*other sizes are available upon request

Notes:		
Recommended Regulator: LABE-3-Delivery pressure-350		

Technical Specifications

Molecular Weight	28.05
Boiling Point	-154.68 F (-103.7 C)
Density (Estimated)	2.91 lbs/gal @ 60 F
Critical Temperature	48.58 F (9.21 C)
Critical Pressure	729.8 psia
Lower Flammable Limits	3.1 %
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	350 (LB: 110)

DOT Name	Ethylene, Compressed
Hazard Class	2.1
ID/UN Number	UN1962
DOT Label	Flammable Gas
CAS Number	74-85-1
Reportable Quantity	N/A

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 5	300	291	2655
99.999 %	200	217	2215
Grade 4	300	291	2655
99.99 %	200	217	2215

*other sizes are available upon request

Notes:				
Recommended Regul	ator: LABE-3-1	Delivery pressur	e-580	

Technical Specifications

Molecular Weight	4.003
Boiling Point	-452.07 F (-268.9 C)
Specific Volume	96.7 cf/lb (6.03 m3/kg)
Critical Temperature	-453.71 F (-234.28 C)
Critical Pressure	33 psia
Lower Flammable Limits	Non-flammable
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	580

Shipping Information

DOT Name	Helium, Compressed
Hazard Class	2.2
ID/UN Number	UN1046
DOT Label	Non-Flammable
CAS Number	7440-59-7
Reportable Quantity	N/A

Hydrogen |

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 5	300	262	2415
99.999 %	200	198	2015

*other sizes are available upon request

Notes:
Recommended Regulator: LABE-3-Delivery pressure-350

Technical Specifications

Molecular Weight	2.0159 -422.98 F (-262.76 C) 191.3cf/lb (12.0m3/kg) -399.82 F (-239.9 C) 190.8 psia 4.0 % Simple asphyxiant
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	350

Hydrogen, Compressed
2.1
UN1049
Flammable Gas
1333-74-0
N/A

Isobutane | нзссн2сн2сн3

Purity	Cylinder Size	Contents (pounds)	Pressure (psia)
Grade 4 99.99 %	LP-26dt	10	46
Grade 2.5 99.5 %	LP-239dt LP-26dt	100 10	46 46
Grade 2 99 %	LP-239dt	100	46

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight	58.123
Boiling Point	10.78 F (-11.79 C)
Density	4.693 lbs/gal @ 60 F
Critical Temperature	274.46 F (134.7 C)
Critical Pressure	527.9 psia
Lower Flammable Limits	1.8 %
Toxicity	Simple asphyxiant
Compatibility	Most metals
CGA	510 (LB:110)

Shipping Information

DOT Name	Isobutane
Hazard Class	2.1
ID/UN Number	UN1969
DOT Label	Flammable Gas
CAS Number	75-28-5
Reportable Quantity	N/A

Methane |

Purity	Cylinder	Contents	Pressure
	Size	(cubic feet)	(psia)
Grade 4 99.99 %	200	260	2015
Grade 2.5	300	360	2415
99.5 %	200	260	2015

*other sizes are available upon request

N	otes:
Re	commended Regulator: LABE-3-Delivery pressure -350

Technical Specifications

Molecular Weight	16.043
Boiling Point	-258.73 F (-161.52 C)
Specific Volume	23.7 cf/lb (1.48 m3/kg)
Critical Temperature	-116.67 F (-82.59 C)
Critical Pressure	665 psia
Lower Flammable Limits	5.0 %
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	350 (LB: 110)

DOT Name	Methane, Compressed
Hazard Class	2.1
ID/UN Number	UN1971
DOT Label	Flammable Gas
CAS Number	74-82-8
Reportable Quantity	N/A

Methyl acetylene | снзс=сн

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 2	LP-26dt	4540	75
99 %	LB	227	75
	LB	100	75

*other sizes are available upon request

Please check price and availability. Price subject to change without notice.

Please specify Gas or Liquid with-drawl

Notes:

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical	Specifications

Toxicity...... Simple asphyxiant

Compatibility Most metals, except

Compatibility.....copper

CGA...... 510 (LB:110)

Shipping Information

Neopentane

Н3СН3СССН3СН3

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 1.8	LP-26	908	22
98 %	LB	227	22
	LB	100	22

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Please check price and availability. Price subject to change without notice.

N	O	tσ	c	
Τ,	v	u	Э	•

Recommended Gas Regulator: LABD-1-Delivery pressure -510

Technical Specifications

 Molecular Weight
 72.15

 Boiling Point
 49.1 F (9.5 C)

 Density
 4.981 lbs/gal @ 60 F

 Critical Temperature
 321.13 F (160.63 C)

 Critical Pressure
 464 psia

 Lower Flammable Limits
 1.4 %

 Toxicity
 Simple asphyxiant

 Compatibility
 Non-corrosive

CGA...... 510 (LB : 110)

Shipping Information

 DOT Name
 2,2-Dimethylpropane

 Hazard Class
 2.1

 ID/UN Number
 UN2044

 DOT Label
 Flammable Gas

 CAS Number
 463-82-1

 Reportable Quantity
 N/A

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 5 99,999 %	300 200	305 230	2655 2215
Grade 4.5	300	305	2655
99.995 %	200	230	2215

*other sizes are available upon request

Notes: Recommended Regulator: LABE-3-Delivery pressure -580

Technical Specifications

Molecular Weight	28.0134
Boiling Point	-320.4 F (-195.8 C)
Specific Volume	13.8cf/lb (0.862m3/kg)
Critical Temperature	-232.4 F (-146.9 C)
Critical Pressure	492.9 psia
Lower Flammable Limits	Non-flammable
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	580 (LB: 110)

Shipping Information

DOT Name	Nitrogen, Compressed
Hazard Class	2.2
ID/UN Number	UN1066
DOT Label	Non-Flammable Gas
CAS Number	7727-37-9
Reportable Quantity	N/A

Nitrous oxide | N20

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 4 99.99 %	200	50	760
Grade 2 99 %	200	50	760

*other sizes are available upon request

Notes:	
Recommended Regulator : SG9012-296	

Technical Specifications

Molecular Weight	44.01
Boiling Point	-127.26 F (C)
Specific Volume	8.7 cf/lb (0.543 m3/kg)
Critical Temperature	97.56 F (36.42 C)
Critical Pressure	1050.76 psia
Lower Flammable Limits	Supports combustion
Toxicity	Simple asphyxiant
Compatibility	No fuels

Shipping Information

CGA...... 296

DOT Name	Nitrous oxide
Hazard Class	2.2
ID/UN Number	UN1070
DOT Label	Non-Flammable,
	Oxidizer
CAS Number	10024-97-2
Reportable Quantity	N/A

Oxygen | 02

Purity	Cylinder Size	Contents (cubic feet)	Pressure (psia)
Grade 4	300	330	2655
99.99 %	200	244	2215
Grade 2.6	300	330	2655
99.6 %	200	244	2215

*other sizes are available upon request

Notes:	
Recommended Regulator: LABE-3-Delivery pressure -540	

Technical Specifications

32.00
-297.33 F (-182.96 C)
12.1cf/lb (0.756m3/kg)
-181.1 F (-118.6 C)
736.9 psia
Supports combustion
Non-toxic
No fuels
540

Shipping Information

DOT Name	Oxygen, Compressed
Hazard Class	2.2
ID/UN Number	UN1072
DOT Label	Non-Flammable,
	Oxidizer
CAS Number	7782-44-7
Reportable Quantity	N/A

Propane | нзссн2сн3

Purity	Cylinder	Contents	Pressure
	Size	(pounds)	(psia)
Grade 2.5	LP-239dt	95	125
99.5 %	LP-26dt	10	125
Grade 2	LP-239dt	95	125
99 %	LP-26dt	10	125

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Notes:
Recommended Regulator: LABD-1-Delivery pressure-510
· ·

Technical Specifications

Molecular Weight	44.097
Boiling Point	-43.75 F (-42.08 C)
Density	4.227 lbs/gal @ 60 F
Critical Temperature	206.06 F (96.7 C)
Critical Pressure	616 psia
Flammable Limits	2.15 %
Toxicity	Simple asphyxiant
Compatibility	Non-corrosive
CGA	510

DOT Name	Propane
Hazard Class	2.1
ID/UN Number	UN1978
DOT Label	Flammable Gas
CAS Number	74-98-6
Reportable Quantity	N/A

Propylene

Purity	Cylinder	Contents	Pressure
	Size	(pounds)	(psia)
Grade 2.:	5 LP-239dt	100	151
99.5 %	LP-26dt	10	151
Grade 2	LP-239dt	100	151
99 %			

*other sizes are available upon request

Please specify Gas or Liquid with-drawl

Recommended Regulator: LABD-1-Delivery pressure -510

Technical Specifications

Molecular Weight...... 42.08 Boiling Point..... -53.86 F (-47.7 C) Density...... 4.343 lbs/gal @ 60 F Critical Temperature...... 196.9 F (91.61 C)

Critical Pressure...... 669 psia Flammable Limits...... 2.4 %

Toxicity..... Simple asphyxiant Compatibility...... Non-corrosive

CGA..... 510

Shipping Information

DOT Name	Propylene
Hazard Class	2.1
ID/UN Number	UN1077
DOT Label	Flammable Gas
CAS Number	115-07-1
Reportable Quantity	N/A

Sulfur hexafluoride

Purity	Cylinder Size	Contents (pounds)	Pressure (psia)
Grade 4 99.99 %	200	110	335
Grade 2 99 %	200 LB	110 0.5	335 335

*other sizes are available upon request

	Notes:
	Recommended Regulator: LABD-2-Delivery pressure -590
ı	
ı	
ı	

Technical Specifications

Molecular Weight...... 146.05 Boiling Point..... -83 F (-63.8 C) Critical Temperature...... 114 F (45.6 C) Critical Pressure...... 545 psia Lower Flammable Limits..... Non-Flammable Toxicity..... TLV 1000 ppm Compatibility...... Non-corrosive CGA...... 590 (LB : 110)

Shipping Information

DOT Name..... Sulfur hexafluoride Hazard Class..... 2.2 UN1080 ID/UN Number..... DOT Label..... Non-Flammable CAS Number..... 2551-62-4 Reportable Quantity..... N/A

Vinyl acetylene | VA (dissolved in 50 % Xylene)

Purity	Cylinder Size	Contents (grams)	Pressure (psia)
Grade 1.8	LB	113 (227)	26
98 %	LB	50 (100)	26

*other sizes are available upon request Please check availability

-	Notes:
r	

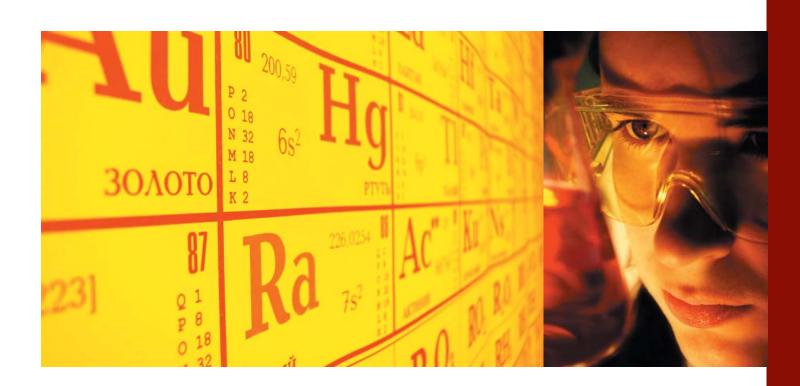
Technical Specifications

Molecular Weight	52.08
Boiling Point	41.18 F (C)
Density (Estimated)	5.75 lbs/gal @ 60 F
Critical Temperature	357.53 F (C)
Critical Pressure	704.89 psia
Lower Flammable Limits	2.22 %
Toxicity	
Compatibility	Most metals, except copper
CCA	330

	Compressed Gas, Flammable, N.O.S.,
	(1-But-3-yne,
DOT Name	Xylene)
Hazard Class	2.1
ID/UN Number	UN1954
DOT Label	Flammable Gas
CAS Number	689-97-4
Reportable Quantity	N/A

Ammonia | Nh3

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150s	138	705
	* 5 - 999 ppm	AL-80s	75	
Argon, Helium		AL-30s	28	
or Nitrogen		AL-150s	138	705
	0.1 – 49 %	AL-80s	75	
		AL-30s	28	
		AL-150s	138	705
Air	* 5 - 999 ppm	AL-80s	75	
		AL-30s	28	
		AL-150s	138	705
	0.1 – 11.25 %	AL-80s	75	
		AL-30s	28	


* = \pm -20% certification.

Notes:

Reduced pressure and volume apply above 2.85 % mole.

3 month shelf life.

Extended lead times may be required.

Benzene | C6H14

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	350
	5 – 999 ppm	AL-80	75	
Argon, Helium		AL-30	28	
or Nitrogen		AL-150	138	350
	0.1 – 49 %	AL-80	75	
		AL-30	28	
		AL-150	138	590
	5 - 999 ppm	AL-80	75	
Air		AL-30	28	
		AL-150	138	590
	0.1 – 0.975 %	AL-80	75	
		AL-30	28	

Notes: Reduced pressure and Contents apply above 200 ppm mole, or in Air

Butane | C4H10

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen	5 – 999 ppm	200	208	350
	0.1 – 49 %	200 40	208 37	350
A i.e.	5 - 999 ppm	200 40	208 37	590
Air	0.1 – 1.35 %	200 40	208 37	590

Notes: Reduced pressure and volume apply above 0.68 % mole, or in Air

Carbon dioxide | CO2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	320
	5 – 999 ppm	AL-80	75	
Argon, Helium		AL-30	28	
or Nitrogen		200	208	320
	0.1 – 49 %	40	37	
		AL-150	138	590
	5 - 999 ppm	AL-80	75	
Air		AL-30	28	
		200	208	590
	0.1 – 49 %	40	37	

Notes: Reduced pressure and volume apply above 31 % mole

Carbon monoxide | co

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	580
	5 – 999 ppm	AL-80	75	
Argon, Helium		AL-30	28	
or Nitrogen		AL-150	138	580
	0.1 – 49 %	AL-80	75	
		AL-30	28	
		AL-150	138	590
Air	50 - 999 ppm	AL-80	75	
		AL-30	28	
		AL-150	138	590
	0.1 – 9.375 %	AL-80	75	
		AL-30	28	

Notes: Reduced pressure and volume apply in Air above 3 % mole

Carbonyl sulfide | cos

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150s	138	330
Argon, Helium or Nitrogen	5 – 999 ppm	AL-80s	75	
orranogen		AL-30s	28	

Notes: Extended lead times may be required.

Chlorine | Cl2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen		AL-150s	138	330
	* 100 – 999 ppm	AL-80s	75	
		AL-30s	28	
		200s	208	330
	** 0.1 – 49 %	40s	37	

* = $\pm -20\%$ certification.

** = $\pm -10\%$ certification.

Notes: Reduced press

Reduced pressure and volume apply above 2.45 % mole. 3 month shelf life

Extended lead times may be required.

Ethane | C2H6

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium		200	208	350
	5 - 999 ppm	40	37	
or Nitrogen		200	208	350
	0.1 – 49 %	40	37	
Air		200	208	590
	5 - 999 ppm	40	37	
		200	208	590
	0.1 – 2.25 %	40	37	

Notes: Reduced pressure and volume apply above 18.65 % mole or in Air.

Ethylene oxide | C2H4O

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Air, Argon, Helium or Nitrogen		200	208	350
	100 - 999 ppm	40	37	
		200	208	350
	0.1 – 2.25 %	40	37	

Notes: Reduced pressure and volume apply above 0.2 % mole or in Air.

Ethylene | C2H4

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen	5 - 999 ppm	200 40	208	350
	0.1 – 49 %	200 40	208 37	350
Air	5 - 999 ppm	200 40	208 37	590
	0.1 – 2.025 %	200 40	208 37	590

Notes: Reduced pressure and volume apply in Air.

Helium | He

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon or		200	208	580
	100 – 999 ppm	40	37	
Nitrogen		200	208	580
	0.1 – 49 %	40	37	
Air		200	208	590
	100 – 999 ppm	40	37	
		200	208	590
	0.1 – 49 %	40	37	

Hexane | C6H14

Notes:

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	350
	5 – 999 ppm	AL-80	75	
Argon, Helium		AL-30	28	
or Nitrogen		AL-150	138	350
	0.1 – 49 %	AL-80	75	
		AL-30	28	
		AL-150	138	590
	5 - 999 ppm	AL-80	75	
Air		AL-30	28	
		AL-150	138	590
	0.1 – 0.9 %	AL-80	75	
		AL-30	28	

Notes: Reduced pressure and Contents apply above 350 ppm mole, or in Air

Hydrogen chloride | HCI

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150s	138	330
	* 100 – 999 ppm	AL-80s	75	
Air, Argon,		AL-30s	28	
Helium or Nitrogen		200s	208	330
	** 0.1 – 49 %	40s	37	

* = +/-20% certification. ** = $\pm 10\%$ certification.

Reduced pressure and volume apply above 20 % mole. 3 month shelf life Extended lead times may be required.

Hydrogen sulfide | H2S

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150s	138	330
	5 – 999 ppm	AL-80s	75	
Argon, Helium		AL-30s	28	
or Nitrogen		AL-150s	138	330
	0.1 – 13.5 %	AL-80s	75	
		AL-30s	28	

Notes: Reduced pressure and volume apply above 7.4 % mole.

Hydrogen | H2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen	100 – 999 ppm	200 40	208	350
	0.1 – 49 %	200	208 37	350
Air	100 - 999 ppm	200 40	208 37	590
Air	0.1 – 3 %	200 40	208 37	590

Isobutane | C4H10

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		200	208	350
Argon, Helium	5 - 999 ppm	40	37	
or Nitrogen		200	208	350
	0.1 – 49 %	40	37	
		200	208	590
Air	5 - 999 ppm	40	37	
All		200	208	590
	0.1 – 1.35 %	40	37	

Notes: Reduced pressure and volume apply above 1 % mole, or in Air.

Methane | CH4

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		200	208	350
Argon, Helium	5 - 999 ppm	40	37	
or Nitrogen		200	208	350
	0.1 – 49 %	40	37	
		200	208	590
Air	5 - 999 ppm	40	37	
		200	208	590
	0.1 – 3.75 %	40	37	

Notes: Reduced pressure and volume apply in Air.

Methyl chloride | CC14

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen	5 - 999 ppm	200	208	350
	0.1 – 49 %	200 40	208 37	350
A in	5 - 999 ppm	200 40	208 37	590
Air	0.1 – 5.25 %	200	208 37	590

Notes: Reduced pressure and volume apply above 1.7 % mole, or in Air.

Nitric oxide INO

Background	Concentration	Cylinder	Est.	CGA
	(molar)	Size	Contents (cubic feet)	
		AL-150s	138	660
Argon, Helium or Nitrogen	50- 999 ppm	AL-80s	75	
or ramogen		AL-30s	28	

Nitrogen IN2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
	50- 999 ppm	200 40	208	580
Helium	0.1 – 49 %	200 40	208 37	580

 $Oxygen_{\tiny{102}}$

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		200	208	580
	10- 999 ppm	80	76	
		40	37	
		200	208	580
	1000 ppm − 5 %	80	76	
Argon, Helium		40	37	
or Nitrogen		200	208	590
	5.01 -23 %	80	76	
		40	37	
		200	208	296
	23.01 % - up	80	76	
		40	37	

Propane | C3H8

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		200	208	350
	5 - 999 ppm	40	37	
Argon, Helium				
or Nitrogen		200	208	350
	0.1 – 49 %	40	37	
		200	208	590
	5 - 999 ppm	40	37	
Air				
		200	208	590
	0.1 – 1.57 %	40	37	

Notes: Reduced pressure and volume apply above 0.53 % mole, or in Air.

Propylene | C3H6

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Argon, Helium or Nitrogen	5 - 999 ppm	200 40	208	350
	0.1 – 49 %	200 40	208 37	350
Air	5 - 999 ppm	200 40	208 37	590
Air	0.1 – 1.8 %	200 40	208 37	590

Notes: Reduced pressure and volume apply above 0.6 % mole, or in Air.

Sulfur Dioxide | SO2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
Air, Argon, Helium or Nitrogen		AL-150s	138	660
	50- 999 ppm	AL-80s	75	
		AL-30s	28	
		AL-150s	138	660
	0.1 – 49 %	AL-80s	75	
		AL-30s	28	

Notes: Reduced pressure and volume apply above 0.96 % mole.

Sulfur hexafluoride | SF6

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		200	208	580
Argon, Helium	50- 999 ppm	40	37	
or Nitrogen		200	208	580
	0.1 – 49 %	40	37	
		200	208	590
A in	50- 999 ppm	40	37	
Air		200	208	590
	0.1 – 49 %	40	37	

Toluene | C7H14

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	350
	5 – 999 ppm	AL-80	75	
Argon, Helium		AL-30	28	
or Nitrogen		AL-150	138	350
	0.1 – 49 %	AL-80	75	
		AL-30	28	
		AL-150	138	590
	5 - 999 ppm	AL-80	75	
Air		AL-30	28	
		AL-150	138	590
	0.1 – 0.9 %	AL-80	75	
		AL-30	28	

Notes:

Reduced pressure and Contents apply above 70 ppm mole, or in Air

Vinyl chloride | C2CL2

Background	Concentration (molar)	Cylinder Size	Est. Contents (cubic feet)	CGA
		AL-150	138	350
	5 – 999 ppm	AL-80	75	
		AL-30	28	
		AL-150	138	350
Argon, Helium or Nitrogen	0.1 – 0.49 %	AL-80	75	350
or remogen		AL-30	28	
		200	208	350
	0.5 – 49 %	40	37	
		AL-150	138	590
	5 - 999 ppm	AL-80	75	
		AL-30	28	
A :		AL-150	138	590
Air	0.1 – 0.49 %	AL-80	75	
		AL-30	28	
	0.5 2.70/	200	208	590
	0.5 – 2.7%	40	37	

Notes: Reduced pres

Reduced pressure and Contents apply above 1.29% mole, or in Air

GAS HANDLING EQUIPMENT

SINGLE-STAGE, GENERAL PURPOSE REGULATORS (MODELS SSD, SSE)

General purpose single-stage regulators are designed for use in noncorrosive gas service. They are recommended for general laboratory use where inlet pressure does not vary greatly (such as liquefied gases) and where high purity is not a consideration.

STANDARD FEATURES

- Filter in Seat Assembly traps foreign matter, extends regulator life and reduces maintenance.
- Neoprene Diaphragm permits accurate delivery pressure settings.
- Outlet metering valve provides flow control.

OPTIONAL FEATURES

• Relief Valve protects regulator components from the effects of overpressurization.

SPECIFICATIONS

Maximum Inlet Pressure: Model SSD: 3000 psig Model SSE: 300 psig

Inlet Pressure Gauge (dual scale): Model SSD: 0-4000 psig/0-275 bar Model SSE: 0-400 psig/0-27 bar Delivery Pressure Range: See Tables Delivery Pressure Gauge: See Tables

Gauge Size: 2" Dial

Operating Temperature Range: Regulators with Flowmeters:

+32°F to +165°F

Regulators without Flowmeters:

 $-40^{\circ}F$ to $+165^{\circ}F$ Flow Coefficient: Regulator: Cv = 0.18Outlet Valve: Cv = 0.4Inlet Connection:

Model SSD: CGA 296, 320, 326, 346, 350, 540, 580, 590 or 660 as ordered Model SSE: CGA 300, 510 or 660 as

ordered

OPTIONAL EQUIPMENT

Equipment	Part No.
Relief Valves: for SSD-15, SSE-15	RV5572-25i
for SSD-50, SSE-50, SSD-600 Series and SSE-600 Series	RV5572-90i
for SSD-125 and SSE-125	RV5572-140i
for SSD-250 and SSE-250	RV5572-300i

Outlet Connection:

1/4" NPT male (on outlet valve) 1/8" NPT female (on flowmeter) Optional Relief Valve Vent Connection:

1/4" NPT male

Supply Pressure Effect: 1.0 psi per 100 psi

Approximate Weight: 4 lbs

MATERIALS OF CONSTRUCTION

Body: Brass Bar Stock

Outlet Valve and Gauges: Brass

Bonnet: Painted Zinc

Other Metal Parts Exposed to Gas:

Brass and Stainless Steel Seat and Seals: Teflon® Diaphragm: Neoprene

Flowmeter: See Series 50 Flowmeter,

Model FM4350

SSD Regulator

SSD Regulator with Flowmeter

TABLE I, Regulators with Metering Valves

Delivery Pressure				
Part No.	Part No.	Range	Gauge	(dual scale)
Model SSD	Model SSE	(psig)	(psig)	(bar)
SSD-15-(CGA)	SSE-15-(CGA)	2-15	0-30	0–2
SSD-50-(CGA)	SSE-50-(CGA)	4-50	0-100	0–7
SSD-125-(CGA)	SSE-125-(CGA)	10-125	0-150	0-10
SSD-250-(CGA)	SSE-250-(CGA)	20-250	0-400	0-27
· · ·				

TABLE II, Regulators with Flowmeters

All regulators with flowmeters have a delivery pressure range of 4-50 psig and are equipped with 0-100 psig pressure gauge on the delivery side.

Part No.	Part No.	Flowmeter Range,
Model SSD	Model SSE	Air at 70°F and 14.7 psia
SSD-600-(CGA)	SSE-600-(CGA)	8-50 sccm
SSD-601-(CGA)	SSE-601-(CGA)	5–85 sccm
SSD-602-(CGA)	SSE-602-(CGA)	40-440 sccm
SSD-603-(CGA)	SSE-603-(CGA)	100–950 sccm
SSD-604-(CGA)	SSE-604-(CGA)	0.2–1.8 slpm
SSD-605-(CGA)	SSE-605-(CGA)	0.4–3.6 slpm
SSD-606-(CGA)	SSE-606-(CGA)	0.5–7.0 slpm
SSD-607-(CGA)	SSE-607-(CGA)	1–13 slpm
SSD-608-(CGA)	SSE-608-(CGA)	6–24 slpm
SSD-609-(CGA)	SSE-609-(CGA)	4–44 slpm

SINGLE-STAGE, HIGH PURITY REGULATORS FOR NON-CORROSIVE GASES (MODEL LABD)

These metal diaphragm single-stage regulators are specially designed for laboratory applications requiring both high reliability and diffusion resistance. They are recommended for high purity non-corrosive gases where inlet pressure does not vary greatly (such as liquefied gases), or where periodic readjustment of delivery pressure setting does not present a problem.

STANDARD FEATURES

- Stainless Steel Diaphragm minimizes diffusion of air into regulator and eliminates "off gassing" associated with elastomeric diaphragms, thus maintaining gas purity.
- High Purity Regulator Design permits vacuum purging of regulator.
- Diaphragm Seal Outlet Valve maintains gas purity.
- Chrome-Plated Surfaces provide polished appearance and ease of cleaning.
- Cartridge (Encapsulated) Seat Assembly provides for ease of maintenance and repair.
- Filter in Seat Assembly traps foreign matter, extends regulator life and reduces maintenance.

OPTIONAL FEATURES

• Relief Valve protects regulator components from the effects of overpressurization.

SPECIFICATIONS

Maximum Inlet Pressure: See Table I Inlet Pressure Gauge: See Table I Delivery Pressure Range: See Table I Delivery Pressure Gauge: See Table I Filter: 10 micron Gauge Size: 2" Dial

Operating Temp. Range: -40°F to +140°F

Flow Coefficient: Regulator: Cv = 0.18 Outlet Valve: Cv = 0.17

Inlet Connection: CGA 296, 320, 326, 346, 350, 540, 580, 590, or 660 as ordered

Outlet Connection:

1/4" NPT female (on outlet valve) Optional Relief Valve Vent Connection:

1/4" NPT male

Supply Pressure Effect: 1.0 psi per 100 psi

Approximate Weight: 3 lbs.

Body: Chrome-Plated Brass Bar Stock Gauges: Chrome-Plated Brass Bonnet: Chrome-Plated Zinc

Filter: Nickel-Plated Sintered Bronze Other Metal Parts Exposed to Gas:

Brass and Stainless Steel

Seat and Seals: Teflon® in Regulator Diaphragm: Type 304 Stainless Steel

Outlet Valve:

Body: Nickel-Plated Brass Bar Stock

Seat: PCTFE

Diaphragm: Type 316L Stainless Steel

LABD Regulator

OPTIONAL EQUIPMENT

Equipment	Part No.
Relief Valves: for LABD-x-15 for LABD-x-50 for LABD-x-125 for LABD-x-250	Series RV5573-25i Series RV5573-90i Series RV5573-150i Series RV5573-300i

TABLE I, Regulators with Metering Valves

		·		
	Inlet Pressure		Delivery Press	ure
	Maximum	Gauge (dual scale)	Range	Gauge (dual scale)
Part No.	(psig)	(psig) (bar)	(psig)	(psig) (bar)
LABD-3-15-(CGA)	3000	0-4000 0-275	2–15	-30" Hg-0-30 -1-0-2
LABD-3-50-(CGA)	3000	0-4000 0-275	4–50	-30" Hg-0-100 -1-0-7
LABD-3-125-(CGA)	3000	0-4000 0-275	10-125	-30" Hg-0-200 -1-0-14
LABD-3-250-(CGA)	3000	0-4000 0-275	20-250	0-400 0-27
LABD-2-15-(CGA)	800	0-1000 0-69	2-15	-30" Hg-0-30 -1-0-2
LABD-2-50-(CGA)	800	0-1000 0-69	4–50	-30" Hg-0-100 -1-0-7
LABD-2-125-(CGA)	800	0-1000 0-69	10-125	-30" Hg-0-200 -1-0-14
LABD-2-250-(CGA)	800	0-1000 0-69	20-250	0-400 0-27
LABD-1-15-(CGA)	300	0-400 0-27	2-15	-30" Hg-0-30 -1-0-2
LABD-1-50-(CGA)	300	0-400 0-27	4–50	-30" Hg-0-100 -1-0-7
LABD-1-125-(CGA)	300	0-400 0-27	10-125	-30" Hg-0-200 -1-0-14
LABD-1-250-(CGA)	300	0-400 0-27	20-250	0-400 0-27
1				

Where "(CGA)" is indicated above, insert appropriate Compressed Gas Association connection number to complete the part number. Example: LABD-3-15-580. Order by complete part number.

TWO-STAGE, HIGH PURITY REGULATORS FOR NON-CORROSIVE GASES (MODEL LABE)

These metal diaphragm two-stage regulators are specially designed for laboratory applications requiring both high reliability and diffusion resistance. Recommended for high purity non-corrosive gases or gas mixtures, they provide constant outlet pressure regardless of changes in cylinder (inlet) pressure.

STANDARD FEATURES

- Stainless Steel Diaphragms minimize diffusion of air into regulator and eliminate "off gassing" associated with elastomeric diaphragms, thus maintaining gas purity.
- High Purity Regulator Design permits vacuum purging of regulator.
- Diaphragm Seal Outlet Valve maintains gas purity.
- Two-Stage Regulator Design ensures constant delivery pressure over varying inlet pressures.
- Chrome-Plated Surfaces provide polished appearance and ease of cleaning.
- Cartridge (Encapsulated) Seat Assemblies provide for ease of maintenance and repair.
- Filter in Each Seat Assembly traps foreign matter, extends regulator life and reduces maintenance.

OPTIONAL FEATURES

• Relief Valve protects regulator components from the effects of overpressurization.

OPTIONAL EQUIPMENT

Equipment	Part No.
Relief Valves:	
for LABE-3-15 Series	RV5573-25i
for LABE-3-50 Series	RV5573-90i
for LABE-3-125 Series	RV5573-150i
for LABE-3-250 Series	RV5573-300i

SPECIFICATIONS

Maximum Inlet Pressure: 3000 psig Inlet Pressure Gauge (dual scale): 0-4000 psig / 0-275 bar Delivery Pressure Range: See Table I Delivery Pressure Gauge: See Table I Filters: 10 micron Gauge Size: 2" Dial

Operating Temperature Range: -40°F to +140°F

Flow Coefficient: Regulator: Cv = 0.15Outlet Valve: Cv = 0.17

Inlet Connection: CGA 296, 320, 326, 346, 350, 540, 580, 590, or 660 as ordered

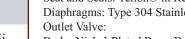
Outlet Connection:

1/4" NPT female (on outlet valve) Optional Relief Valve Vent Connection:

1/4" NPT male

Supply Pressure Effect: 0.04 psi per 100 psi

Approximate Weight: 5 lbs.



Body: Chrome-Plated Brass Forging Gauges: Chrome-Plated Brass Bonnets: Chrome-Plated Zinc Filters: Nickel-Plated Sintered Bronze Other Metal Parts Exposed to Gas: Brass and Stainless Steel Seat and Seals: Teflon® in Regulator Diaphragms: Type 304 Stainless Steel

Body: Nickel-Plated Brass Bar Stock

Seat: PCTFE

Diaphragm: Type 316L Stainless Steel

TABLE I

Delivery Pressure				
	Range	Gauge (dual scale)		
Part No.	(psig)	(psig) (bar)		
LABE-3-15-(CGA)	2-15	-30" Hg-0-30 -1-0-2		
LABE-3-50-(CGA)	4-50	-30" Hg-0-100 -1-0-7		
LABE-3-125-(CGA)	10-125	-30" Hg-0-200 -1-0-14		
LABE-3-250-(CGA)	20-250	0-400 0-27		

Where "(CGA)" is indicated above, insert appropriate Compressed Gas Association connection number to complete the part number. Example: LABE-3-15-580. Order by complete part number.

LABE Regulator

SINGLE-STAGE REGULATORS FOR CORROSIVE, HIGH PURITY GASES (MODEL APC)

The Model APC regulator is designed for use in applications requiring both corrosion and diffusion resistance. These regulators are specially suited for use in gas delivery systems requiring high leak integrity and minimal internal volume for maintaining guaranteed gas purity levels.

These single-stage regulators are recommended for use with gases where inlet pressure does not vary greatly (such as liquefied gases), or where periodic readjustment of delivery pressure setting does not present a problem.

STANDARD FEATURES

- Stainless Steel Diaphragm minimizes
- Type 316 Stainless Steel Bar Stock Construction provides maximum corrosion resistance.
- Metal to Metal Diaphragm Seal assures maximum diffusion resistance.
- High Purity Regulator Design permits vacuum purging of regulator.
- Low Internal Volume facilitates purging and reduces contamination potential.
- Diaphragm Seal Outlet Valve maintains gas purity.
- Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.
- Threaded Holes in Rear of Regulator permit front panel mounting.

OPTIONAL FEATURES

- Captured Venting Configuration provides 1/16" NPTF vent port and stem packing allowing for complete capturing of bonnet when connected to a vent line or disposal system.
- Mounting Ring permits regulator to be panel mounted.
- Internal (Inboard) Helium Leak Test and Test Report determines inboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 2 x 10–8 sccs air equivalent.
- External (Outboard) Helium Leak Test and Test Report determines outboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 5 x 10–7 sccs air equivalent.

SPECIFICATIONS

Maximum Inlet Pressure:

APC-3: 3000 psig APC-2: 800 psig APC-1: 300 psig

Inlet Pressure Gauge: See Table I Delivery Pressure Range: See Table I Delivery Pressure Gauge: See Table I

Filter: 40 micron Gauge Size: 2" Dial

Operating Temp. Range: -40°F to +140°F

Flow Coefficient:
Regulator: Cv = 0.06
Outlet Valve: Cv = 0.17
Internal Volume:
Regulator (body only): 6.0 cc
Inlet Connection: CGA 296, 320, 326, 330, 346, 350, 510, 540, 580, 590, 660 or 705 as ordered
Outlet Connection:
1/4" NPT female (on outlet valve)

Approximate Weight: 3 lbs.

APC Regulator

MATERIALS OF CONSTRUCTION

Body and Outlet Valve:

Type 316 Stainless Steel Bar Stock Gauges: Type 316 Stainless Steel Bonnet: 300 Series Stainless Steel Other Metal Parts Exposed to Gas:

Type 316 Stainless Steel

Seats: PCTFE Seals: Teflon®

Diaphragms: Type 316 Stainless Steel

TABLE I

1110001					
	Inlet Pressure		Delivery Pressur	e	
	Gauge (dual scale)		Range Gauge (di	Range Gauge (dual scale)	
Part No.	(psig) (bar)	(psig)	(psig)	(bar)	
APC-3-30-(CGA)	0-4000 0-275	2-30	-30" Hg-0-60	-1-0-4	
APC-3-75-(CGA)	0-4000 0-275	4–75 -	30" Hg-0-100	-1-0-7	
APC-3-150-(CGA)	0-4000 0-275	10-150	-30" Hg-0-200	-1-0-14	
APC-3-300-(CGA)	0-4000 0-275	20-300	0-400	0-27	
APC-3-500-(CGA)	0-4000 0-275	30-500	0-600	0-34	
APC-2-30-(CGA)	0-1000 0-69	2-30	-30" Hg-0-60	-1-0-4	
APC-2-75-(CGA)	0-1000 0-69	4–75	-30" Hg-0-100	-1-0-7	
APC-2-150-(CGA)	0-1000 0-69	10-150	-30" Hg-0-200	-1-0-14	
APC-2-300-(CGA)	0-1000 0-69	20-300	0-400 0-27		
APC-2-500-(CGA)	0-1000 0-69	30-500	0-600 0-34		
APC-1-30-(CGA)	0-400 0-27	2-30	-30" Hg-0-60	-1-0-4	
APC-1-75-(CGA)	0-400 0-27	4–75	-30" Hg-0-100	-1-0-7	
APC-1-150-(CGA)	0-400 0-27	10-150	-30" Hg-0-200	-1-0-14	
, ,			-		

Where "(CGA)" is indicated above, insert appropriate Compressed Gas Association connection number to complete the part number. Example: APC-3-30-580. Order by complete part number.

Equipment	Part No.
Panel Mounting Ring*	PM3803
Inboard Helium Leak Test and Test Report	HT1000
Outboard Helium Leak Test and Test Report	HT1001
Compression Fittings* (male connectors)	
1/4" NPT male x 1/8" compression	SG6713
1/4" NPT male x 1/4" compression	SG6714
Safety Mounting Brackets*	See page XX
Captured Venting Configuration	SG5650

^{*} If selected, these items are not installed on the regulator. They are shipped as separate items.

TWO-STAGE REGULATORS FOR CORROSIVE, HIGH PURITY GASES (MODEL APG)

The Model APG regulator is specially suited for applications requiring both corrosion and diffusion resistance in a two-stage regulator. It is recommended for high purity gases or gas mixtures that have corrosive properties. The two-stage design provides constant outlet pressure regardless of changes in cylinder (inlet) pressure.

STANDARD FEATURES

- Type 316 Stainless Steel Bar Stock Construction provides maximum corrosion resistance.
- Metal to Metal Diaphragm Seal assures maximum diffusion resistance.
- High Purity Regulator Design permits vacuum purging of regulator.
- Diaphragm Seal Outlet Valve maintains high purity regulator design.
- Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.

OPTIONAL FEATURES

- Captured Venting Configuration provides 1/16" NPTF vent ports and stem packing allowing for complete capturing of second stage bonnet when connected to a vent line or disposal system.
- Mounting Ring permits regulator to be panel mounted.
- Internal (Inboard) Helium Leak Test and Test Report determines inboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 2 x 10–8 sccs air equivalent.
- External (Outboard) Helium Leak Test and Test Report determines outboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 5 x 10–7 sccs air equivalent.

SPECIFICATIONS

Maximum Inlet Pressure: 3000 psig Inlet Pressure Gauge (dual scale): 0–4000 psig / 0–275 bar

Delivery Pressure Range: See Table I Delivery Pressure Gauge: See Table I

Filter: 40 micron Gauge Size: 2" Dial Operating Temperature Range:

-40°F to +140°F Flow Coefficient: Regulator: Cv = 0.05 Outlet Valve: Cv = 0.17

Inlet Connection: CGA 296, 320, 326, 330, 346, 350, 510, 540, 580, 590,

660 or 705 as ordered Outlet Connection:

1/4" NPT female (on outlet valve)

Supply Pressure Effect: 0.04 psi per 100 psi Approximate Weight: 5 lbs.

MATERIALS OF CONSTRUCTION

Body and Outlet Valve:

Type 316 Stainless Steel Bar Stock Gauges: Type 316 Stainless Steel Bonnet: 300 Series Stainless Steel Other Metal Parts Exposed to Gas:

Type 316 Stainless Steel Seats: PCTFE

Seals: Teflon®

Diaphragms: Type 316 Stainless Steel

TABLE I

Delivery Pressure			
	Range Gauge (dual scale)		e)
Part No.	(psig)	(psig)	(bar)
APG-3-30-(CGA)	2-30 -30"	Hg-0-60	-1-0-4
APG-3-75-(CGA)	4-75 -30"	Hg-0-100	-1-0-7
APG-3-150-(CGA)	10-150	-30" Hg-0-200	-1-0-14
APG-3-300-(CGA)	20-300	0–400	0-27
APG-3-500-(CGA)	30-500	0–600	0-34

Where "(CGA)" is indicated above, insert appropriate Compressed Gas Association connection number to complete the part number. Example: APG-3-30-580. Order by complete part number.

Equipment	Part No.
Panel Mounting Ring*	PM3803
Inboard Helium Leak Test and Test Report	HT1000
Outboard Helium Leak Test and Test Report	HT1001
Compression Fittings* (male connectors)	
1/4" NPT male x 1/8" compression	SG6713
1/4" NPT male x 1/4" compression	SG6714
Safety Mounting Brackets*	
Captured Venting Configuration	SG5650

^{*} If selected, these items are not installed on the regulator. They are shipped as separate items.

LINE REGULATORS FOR ULTRA HIGH PURITY GASES (MODELS AG3800, AG3810)

The Models AG3800 and AG3810 regulators are designed for ultra high purity gases used in line applications at inlet pressures up to 3000 psig. These regulators are specially suited for point-of-use gas delivery systems requiring high leak integrity and guaranteed gas purity levels. Model AG3800 is for non-corrosive gases; Model AG3810 is suitable for use with corrosive gases.

AG3810 Regulator

STANDARD FEATURES

- Metal to Metal Diaphragm Seals assure maximum diffusion resistance.
- High Purity Regulator Design permits vacuum purging of regulator.
- In-line Porting permits direct installation of regulator in piping system.
- Stainless Steel Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.
- Threaded Holes in Rear of Regulator permit front panel mounting.

OPTIONAL FEATURES

- Mounting Ring permits regulator to be panel mounted
- Compression Fittings installed in inlet and outlet ports allow connection to 1/4" or 1/8" tubing.
- Internal (Inboard) Helium Leak Test and Test Report determines inboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 2 x 10–8 sccs air equivalent.
- External (Outboard) Helium Leak Test and Test Report determines outboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 5 x 10–7 sccs air equivalent.

SPECIFICATIONS

Maximum Inlet Pressure: 3000 psig Delivery Pressure Range: See Table I and II Delivery Pressure Gauge: See Table I and II Filter: 40 micron

Gauge Size: 2" Dial

Operating Temperature Range:

-40°F to +140°F

Flow Coefficient: Cv = 0.06

Inlet and Outlet Connections: 1/4" NPT female (standard). Compression fittings

available as an option Approximate Weight: 2 lbs.

MATERIALS OF CONSTRUCTION

Body:

Model AG3800: Brass Bar Stock Model AG3810: Type 316 SS Bar Stock

Gauges:

Model AG3800: Brass

Model AG3810: Type 316 Stn. Stl.

Bonnet:

Model AG3800: Brass

Model AG3810: 300 Series Stn. Stl.

Other Metal Parts Exposed to Gas:

Model AG3800: Brass

Model AG3810: Type 316 Stn. Stl.

Seat: PCTFE

Diaphragm: Type 316 Stainless Steel

Seals: Teflon®

TABLE I, Brass Models

	Delivery Pressure		
	Range Gauge (dual scale)		scale)
Part No.	(psig)	(psig)	(bar)
AG3800-30	4–30	0–60	0–4
AG3800-100	10-100	0-200	0–14
AG3800-300	20-300	0-400	0–27
AG3800 -500	30-500	0-600	0-41

TABLE II, Stainless Steel Models

	Delivery Pressure			
		Range Gauge (dual scale)		scale)
	Part No.	(psig)	(psig)	(bar)
	AG3810-30	4–30	0–60	0–4
	AG3810-100	10-100	0-200	0-14
	AG3810-300	20-300	0-400	0–27
	AG3810-500	30-500	0-600	0-41
П				

Equipment	Part No.
Panel Mounting Ring*	PM3803
Inboard Helium Leak Test and Test Report	HT1000
Outboard Helium Leak Test and Test Report	HT1001
Compression Fittings (two required)*	
1/8" compression for Model AG3800	SG6703
1/4" compression for Model AG3800	SG6704
1/8" compression for Model AG3810	SG6713
1/4" compression for Model AG3810	SG6714

^{*} If selected, these items are not installed on the regulator. They are shipped as separate items.

LINE REGULATORS FOR ULTRA HIGH PURITY GASES (MODELS AG3800, AG3810)

The Models AG3800 and AG3810 regulators are designed for ultra high purity gases used in line applications at inlet pressures up to 3000 psig. These regulators are specially suited for point-of-use gas delivery systems requiring high leak integrity and guaranteed gas purity levels. Model AG3800 is for non-corrosive gases; Model AG3810 is suitable for use with corrosive gases.

AG38

AG3810 Regulator

STANDARD FEATURES

- Metal to Metal Diaphragm Seals assure maximum diffusion resistance.
- High Purity Regulator Design permits vacuum purging of regulator.
- In-line Porting permits direct installation of regulator in piping system.
- Stainless Steel Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.
- Threaded Holes in Rear of Regulator permit front panel mounting.

OPTIONAL FEATURES

- Mounting Ring permits regulator to be panel mounted
- Compression Fittings installed in inlet and outlet ports allow connection to 1/4" or 1/8" tubing.
- Internal (Inboard) Helium Leak Test and Test Report determines inboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 2 x 10–8 sccs air equivalent.
- External (Outboard) Helium Leak Test and Test Report determines outboard leak rate of gas from regulator to atmosphere; test report certifies leak rate of less than 5 x 10–7 sccs air equivalent.

SPECIFICATIONS

Maximum Inlet Pressure: 3000 psig Delivery Pressure Range: See Table I and II Delivery Pressure Gauge: See Table I and II

Filter: 40 micron Gauge Size: 2" Dial

Operating Temperature Range:

-40°F to +140°F

Flow Coefficient: Cv = 0.06

Inlet and Outlet Connections: 1/4" NPT female (standard). Compression fittings available as an option

Approximate Weight: 2 lbs.

MATERIALS OF CONSTRUCTION

Body:

Model AG3800: Brass Bar Stock Model AG3810: Type 316 SS Bar Stock

Gauges:

Model AG3800: Brass

Model AG3810: Type 316 Stn. Stl.

Bonnet:

Model AG3800: Brass

Model AG3810: 300 Series Stn. Stl.

Other Metal Parts Exposed to Gas:

Model AG3800: Brass

Model AG3810: Type 316 Stn. Stl.

Seat: PCTFE

Diaphragm: Type 316 Stainless Steel

Seals: Teflon®

TABLE I, Brass Models

	Delivery Pressure		
	Range Gauge (dual scale)		scale)
Part No.	(psig)	(psig)	(bar)
AG3800-30	4–30	0-60	0–4
AG3800-100	10-100	0-200	0-14
AG3800-300	20-300	0-400	0–27
AG3800-500	30–500	0–600	0–41

TABLE II, Stainless Steel Models

Delivery Pressure			
Range Gauge (dual scale)		scale)	
Part No.	(psig)	(psig)	(bar)
AG3810-30	4–30	0–60	0–4
AG3810-100	10-100	0-200	0-14
AG3810-300	20-300	0-400	0–27
AG3810-500	30-500	0-600	0-41

Equipment	Part No.
Panel Mounting Ring*	PM3803
Inboard Helium Leak Test and Test Report	HT1000
Outboard Helium Leak Test and Test Report	HT1001
Compression Fittings (two required)*	
1/8" compression for Model AG3800	SG6703
1/4" compression for Model AG3800	SG6704
1/8" compression for Model AG3810	SG6713
1/4" compression for Model AG3810	SG6714

^{*} If selected, these items are not installed on the regulator. They are shipped as separate items.

SINGLE-STAGE REGULATORS FOR NITROUS OXIDE AND CARBON DIOXIDE (MODELS SG9011, SG9012, SG9014)

Nitrous Oxide and Carbon Dioxide frequently cause ordinary regulators to freeze up. Models SG9011, SG9012 and SG9014 will handle these gases at flow rates up to 100 scfh at 70°F without freeze-up and without the need for electrical connections. Note: These regulators are not manufactured to meet FDA standards and should not be used for medical gases. Regulators for medical gases are shown on page 30.

STANDARD FEATURES

- Filter in Seat Assembly traps foreign matter, extends regulator life and reduces maintenance.
- Unique Regulator Design operates at flow rates up to 100 scfh at 70°F without freeze-up.
- Pressure Relief Valve protects regulator and downstream system from overpressurization.

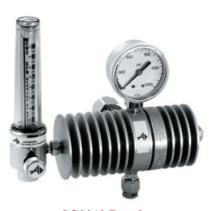
SPECIFICATIONS

Maximum Inlet Pressure: 1500 psig Inlet Pressure Gauge: 0–1500 psig Maximum Flow Rate: 100 scfh Delivery Range: See Table I

Delivery Gauge/Flowmeter: See Table I

Gauge Size: 2" Dial Inlet Connection: CGA 326 for Nitrous Oxide CGA 320 for Carbon Dioxide

Outlet Connection: 1/4" NPT female Relief Valve: Self-Reseating 200 psig


Approximate Weight: 3 lbs

MATERIALS OF CONSTRUCTION

Body and Bonnet: Aluminum Gauges: Chrome-Plated Brass Seat: Polyurethane Seals and Diaphragm: Neoprene Flowmeter (Model SG9012): Chrome-plated Brass with Lexan plastic tube and shield

SG9014 Regulator

SG9012 Regulator

TABLE I

			Delivery
		Delivery	Gauge or
Part No.	Configuration	Range	Flowmeter
SG9011-(CGA)	Regulator with flow gauge*	10-100 scfh	0-100 scfh
SG9012-(CGA)	Regulator with flowmeter	30-100 scfh	30-100 scfh
SG9014-(CGA)	Regulator with pressure gauge	10–150 psig	0–200 psig

^{*} Note: A Regulator equipped with a flow gauge is not accurate when a backpressure in excess of 2 psig exists at the outlet. In applications where backpressure in excess of 2 psig can be expected, a regulator with a flowmeter should be used.

Of HOME EQUITMENT	
Equipment	Part No.
Teflon® Washers for CGA 320 (package of 25)	SG6076

SINGLE-STAGE REGULATORS FOR HIGH INLET PRESSURES (AG3850, AG3910 SERIES)

These single-stage, piston sensed, pressure regulators are designed for use with inlet pressures up to 5000 psig; such as required for use on 3500 psig (3K) and 4500 psig (HC-500) cylinders. Constructed of either brass or stainless steel, they are available in both cylinder and line configurations.

STANDARD FEATURES

- High Delivery Pressures up to 2500 psig.
- Piston Sensor Design ensures safe reliable service.
- Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.
- Diaphragm Seal Outlet Valve provides for on/off flow control (cylinder regulators only).

OPTIONAL FEATURES

- Mounting Ring permits regulator to be panel mounted
- Captured Venting Configuration provides 1/16" NPTF vent port and stem packing allowing for complete capturing of bonnet when connected to a vent line or disposal system.

SPECIFICATIONS

Maximum Inlet Pressure: 5000 psig

Inlet Pressure Gauge:

Cylinder Regulators: 0-5000 psig

Line Regulators: None

Delivery Pressure Range: See Tables I & II Delivery Pressure Gauge: See Tables I & II

Filter: 40 micron Gauge Size: 2" Dial

Operating Temp. Range: -15°F to +140°F

Flow Coefficient: Regulator: Cv = 0.06Outlet Valve: Cv = 0.17Inlet Connections:

Cylinder Regulators: CGA 347, 350, 580, 680 or 685 as ordered

Line Regulators: 1/4" NPT female Outlet Connection: 1/4" NPT female Approximate Weight: 3 lbs.

OPTIONAL EQUIPMENT

Equipment	Part No.
Panel Mounting Ring*	PM3803
Captured Venting	
Configuration:	
AG3850 Series	SG5651
AG3910 Series	SG5650

^{*} If selected, these items are not installed on the regulator. They are shipped as s eparate items.

MATERIALS OF CONSTRUCTION

Body and Outlet Valve:

AG3850 Series: Brass Bar Stock AG3910 Series: Type 316 SS Bar Stock

Gauges:

AG3850 Series: Brass AG3910 Series: Type 316 SS

Bonnet:

AG3850 Series: Brass Bar Stock AG3910 Series: 300 Series SS Other Metal Parts Exposed to Gas: AG3850 Series: Brass and Stn. Stl. AG3910 Series: Type 316 Stn. Stl.

Seat: Teflon®

Seals: Viton® and Teflon®

Outlet Valve: Seat: PCTFE

Diaphragm: Type 316 Stn. Stl.

AG3850 Regulator

TABLE I, AG3850 Series (Brass)

		Delivery Pressure	G (4	-11-\
		Range	Gauge (d	lual scale)
Part No.	Type	(psig)	(psig)	(bar)
AG3850-(CGA)	Cylinder	50-800	0 - 1000	0-69
AG3851-(CGA)	Cylinder	100-1500	0-2000	0-138
AG3852-(CGA)	Cylinder	200-2500	0-3000	0-207
AG3853	Line	50-800	0-1000	0-69
AG3854	Line	100-1500	0-2000	0-138
AG3855	Line	200–2500	0-3000	0-207

TABLE II, AG3910 Series (Stainless Steel)

Part No.	Tryna	Delivery Pressure Range		lual scale)
rait No.	Type	(psig)	(psig)	(bar)
AG3910-(CGA)	Cylinder	50-800	0-1000	0–69
AG3911-(CGA)	Cylinder	100-1500	0-2000	0-138
AG3912-(CGA)	Cylinder	200–2500	0-3000	0-207
AG3913	Line	50-800	0-1000	0–69
AG3914	Line	100-1500	0-2000	0-138
AG3915	Line	200–2500	0-3000	0-207

SINGLE-STAGE REGULATORS FOR **VERY HIGH INLET PRESSURES (SG3600 SERIES)**

These piston-type regulators are designed for use on 6000 psig (6K) cylinders. The stainless steel models are designed for applications requiring inlet pressures up to 10,000 psig. Both brass and stainless models are available as line regulators.

WARNING: Self-relieving regulators should not be used in a confined area or with flammable gases. Injury or death may result.

STANDARD FEATURES

- Large Low-Torque Handle allows easy adjustment of delivery pressure.
- Filter in Inlet traps foreign matter, extends regulator life and reduces maintenance.
- Outlet Metering Valve provides flow control (cylinder regulators only).
- · Self-Relieving Models automatically vent downstream pressure should it exceed delivery pressure setting and permits operator to reduce pressure setting by venting downstream pressure through hand-knob.

OPTIONAL FEATURES

• Mounting Ring permits regulator to be panel mounted.

SPECIFICATIONS

Maximum Inlet Pressure: See Tables Inlet Pressure Gauge: See Tables Delivery Pressure Range: See Tables Delivery Pressure Gauge: See Tables

Gauge Size: 21/2" Dial

Operating Temp. Range: -65°F to +140°F

Flow Coefficient: Regulator: Cv = 0.06Outlet Valve: Cv = 0.45Inlet Connection:

Self-Relieving Cylinder Regulators: CGA 347, 677, 680 or 702 as ordered Non-Relieving Cylinder Regulators:

CGA 347, 677, 680, 695, 701,

702 or 703 as ordered

Line Regulators: 1/4" NPT female

Outlet Connection: Cylinder Regulators:

1/4" NPT male (on outlet valve) Line Regulators: 1/4" NPT female Supply Pressure Effect: 1.0 psi per 100 psi

Approximate Weight: 6 lbs

OPTIONAL EQUIPMENT

Equipment	Part No.			
Panel Mounting Ring	PM3804			
Oxygen Cleaning				
for inlet pressures				
above 3000 psig				
(required for CGA 701)	OC100			

MATERIALS OF CONSTRUCTION

Body and Gauges: See Tables Outlet Valve: Type 316 Stainless Steel

Bonnet:

Brass Regulators: Brass Stainless Steel Regulators: Electroless Nickel-Plated Brass Other Metal Parts Exposed to Gas: Brass Regulators: Brass and Stn. Stl.

Stainless Steel Regulators: Type 303 and Type 316 Stn. Stl

Seat: PCTFE Seals:

Regulator: Viton® Outlet Valve: Teflon® SG3610 Cylinder Regulator

TABLE I, Non-Relieving Cylinder Regulators

			Inlet		Delivery	
	Body	Gauge	Pressure	(psig)	Pressure (p	sig)
Part No.	Material	Material	Max.	Gauge	Range	Gauge
SG3610-(CGA)	Brass	Brass	6000	0-7500	400-6000	0-7500
SG3612-(CGA)	Brass	Brass	6000	0-7500	300-3500	0-4000
SG3614-(CGA)	Brass	Brass	6000	0-7500	200-1500	0-2000
SG3620-(CGA)	Type 303 SS	Type 316 SS	10,000	0-10,000	300-6000	0 - 7500
SG3622-(CGA)	Type 303 SS	Type 316 SS	10,000	0-10,000	200-3500	0 - 4000

TABLE II, Self-Relieving Cylinder Regulators

			Inlet		Delivery	
	Body	Gauge	Pressur	e (psig)	Pressure (p	osig)
Part No.	Material	Material	Max.	Gauge	Range	Gauge
SG3600-(CGA)	Brass	Brass	6000	0-7500	400-6000	0-7500
SG3602-(CGA)	Brass	Brass	6000	0 - 7500	300-3500	0 - 4000
SG3604-(CGA)	Brass	Brass	6000	0-7500	200-1500	0-2000
` /						

Where "(CGA)" is indicated in Tables I and II, insert appropriate Compressed Gas Association connection number to complete the part number. For example: SG3610-677. Order by complete part number.

TABLE III, Line Regulators

			Inlet		Delivery	
	Body	Gauge	Pressure	e (psig)	Pressure (1	osig)
Part No.	Material	Material	Max.	Gauge	Range	Gauge
SG3611	Brass	Brass	6000	None	400-6000	0-7500
SG3613	Brass	Brass	6000	None	300-3500	0 - 4000
SG3621	Type 303 SS	Type 316 SS	10,000	None	300-6000	0 - 7500
SG3623	Type 303 SS	Type 316 SS 1	0,000	None	200–3500	0-4000

REGULATOR SAFETY **MOUNTING BRACKETS (RM SERIES)**

RM Series Safety Mounting Brackets help organize work areas, improve safety and ensure gas purity by eliminating the installment of a regulator directly onto a gas cylinder valve. The fixed mounting of a cylinder regulator to an Advanced RM Series Mounting Bracket eliminates hazards incurred with regulator and cylinder during change-outs while allowing fast and easy cylinder replacement.

The RM Series is available in wall-mount or bench-mount configurations to provide versatility to meet any application requirement. The bench-mount model includes a built-in cylinder clamp and adjustable regulator mast. Two diaphragm seal inlet isolation valves are provided standard with dual-cylinder wall mount models.

MATERIALS OF CONSTRUCTION

Block and CGA Fittings: Brass with Brass Assemblies Type 316SS with Stn. Stl. Assemblies Bracket and Clamp: 12-Gauge Hot Rolled Steel with Powder Coat Epoxy Finish Pigtails:

Rigid:

Brass with Brass assemblies. Type 316L SS with Stn.Stl. assemblies Flexible Hose (Teflon®-lined): extruded PTFE Teflon® inner core with Type 304SS single overbraid and Type 316SS end fittings Flexible Hose (all metal): Type 316L SS inner core with Type 321 SS double overbraid and Type 316 SS end fittings Seats:

Check Valves: EPDM with brass systems, Viton® with stainless steel systems Valves: PCTFE

Wall Mount: Dual Cylinder

Wall Mount: Single Cylinder

Bench Mount: Single Cylinder

STANDARD FEATURES

- · Fixed Mounting eliminates recurring leaks, ensures proper regulator alignment and prevents damage to regulator.
- · Bracket Dimensions allow for installment of single or two-stage regulators.
- Spare Access Port in Block provides versatility to install options such as pressure switches, valves or additional pigtails.

OPTIONAL FEATURES

• Double Braided (all metal) Stainless Steel

Flexible Hose maintains gas purity and provides ease of connecting cylinder.

- Teflon®-lined Stainless Steel Flexible Hose provides convenience while reducing cost (not recommended for high-purity applications).
- Check Valve prevents discharge of gas from regulator and pigtail during cylinder changeout.
- · Purge and Vent Assemblies enhance system purity and operator safety.

SPECIFICATIONS

Maximum Inlet Pressure: 3000 psig Valve (Dual Cyl. only): SG5460N and SG5480N Series (page 95) Inlet Connection:

CGA Connection as Specified

Outlet Connection: CGA Connection as Specified, (suitable for direct mounting of a pressure regulator with inlet CGA) Plugged Access Port: 1/4" NPT female (on RM block)

Rigid Pigtail: 36" long, 0.25" OD tubing with 5" ID service loop, providing a 23" useable length

Flexible Hose (Teflon®-lined): 36" long, 0.187" nominal I.D., 0.312"

nominal O.D.

Flexible Hose (all metal): 30" long, 0.25" nominal I.D., 0.312" nominal O.D.

Approximate Weight: RMB Models: 9 lbs. RMW-X-1: 3 lbs. RMW-X-2: 5 lbs.

PART NUMBER KEY FOR RM SERIES MOUNTING BRACKETS

Model Number

Materials of Construction

(Metal Parts): Brass = B

Type 316 Stainless Steel = S

Cylinder Leads (Pigtails)

316 SS Flexible Hose = F Teflon-Lined Flexible Hose = T Rigid Tubing = Leave Blank **CGA Connection**

Number

Bracket Style

Total Number of Cylinders 1 (Both Models)

Bench Model = B 1 (Both Models)
Wall Model = W 2 (RMW Model only)

Check Valves:

With Check Valves = CV

Without Check Valves = Leave Blank

ORDERING INFORMATION

To order a regulator safety mounting bracket, complete the part number using the "Part Number Key" above. For example, to order a single cylinder wall-mount in brass, with rigid pigtail, check valve and a CGA 580 connection, the part number would be RMW-B-1-CV-580.

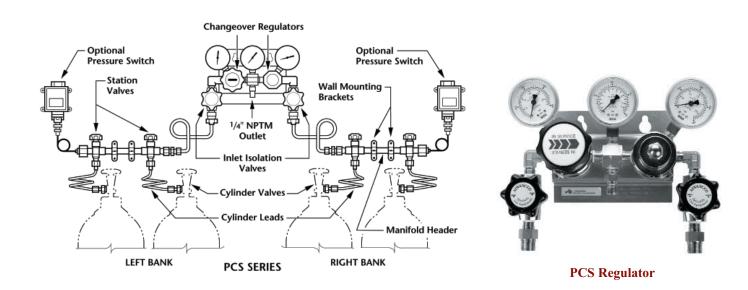
Regulator Safety Mounting Bracket Assemblies for acetylene service require flashback arrestors (SG6545). All assemblies ordered with CGA 510 will be billed and shipped with optional flashback arrestors installed on each pigtail, unless the order specifies with which gas it will be used.

Advanced recommends the use of an optional purge and vent assembly without the check valve option when using toxic and/or corrosive gases.

Advanced does not recommend the use of Teflon-lined stainless steel flexible hoses in bracket assemblies designed for oxygen service and will not provide such assemblies when ordered with CGA 540 connections. Advanced does not recommend the use of Teflon-lined, stainless steel flexible hoses with hydrogen or helium and with high purity applications. Although these gases are compatible with the materials of construction, experience shows that permeation through the PTFE core can occur.

TABLE I, Non-Relieving Cylinder Regulators

Equipment and Replacement Parts Vent Volva (Installed in Access Part)	Part No.
Vent Valve (Installed in Access Port)	500004
Brass Valve	SG6684
Stainless Steel Valve	SG6685
Purge Valve (Installed in Access Port)	00000
Brass Valve	SG6690
Stainless Steel Valve	SG6691
Isolation Valve (Installed Between Pigtail and Block	
on One Cylinder Units)	995505
Brass System with Rigid Type Pigtail	SG6686
Brass System with 316 Stn. Stl. Flexible or	SG6687
Teflon-lined Type Hose	994400
Stainless Steel System with Rigid Type Pigtail	SG6688
Stainless Steel System with 316 Stn. Stl. Flexible or	SG6689
Teflon-lined Type Hose	
Purge and Vent Assembly (Installed in Access Port)	
Brass Assembly	SG6682
Stainless Steel Assembly	SG6683
Flashback Arrestor for Acetylene Service–One per Cylinder	
Installed between CGA and Pigtail on Brass Systems	SG6545
Replacement Pigtails, Rigid Type	
Brass without Check Valve	SG6646-(CGA)
Brass with Check Valve	SG6647-(CGA)
Stainless Steel without Check Valve	SG6648-(CGA)
Stainless Steel with Check Valve	SG6649-(CGA)
Replacement Pigtails, Teflon-lined Flexible Type	
Brass System without Check Valve	SG6620-(CGA)
Brass System with Check Valve	SG6621-(CGA)
Stainless Steel without Check Valve	SG6622-(CGA)
Stainless Steel with Check Valve	SG6623-(CGA)
Replacement Pigtails, 316 Stn. Stl. Flexible Type	
Brass System without Check Valve	SG6633-(CGA)
Brass System with Check Valve	SG6634-(CGA)
Stainless Steel without Check Valve	SG6635-(CGA)
Stainless Steel with Check Valve	SG6636-(CGA)



HIGH PURITY, CHANGEOVER REGULATOR SYSTEMS (PCS, CRS SERIES)

Changeover Systems are designed to provide a continuous supply of gas from two or more cylinders containing compressed or liquefied gases with vapor pressures above 300 psig. Advanced changeovers allow the user to deplete gas in a cylinder without the concerns of gas outages and of wasting unused gas as a result of premature change-outs. Advanced Changeover Systems incorporate two diffusion-resistant regulators with diaphragm seal inlet valves allowing for cylinder isolation when a change of cylinders is required. Available in either brass or stainless steel construction, they are supplied entirely installed on a stainless steel panel providing for convenient, wall-mounted installation. The overall compact design allows for installation in areas where space is at a premium.

PCS SERIES

Primary Changeover Systems are designed for use in processes incorporating downstream line or station regulators located at the point of use. The PCS Series incorporates two regulators set at slightly different delivery pressures. Gas discharges from the side with the higher setting first (primary side) which is indicated by the "In Service" arrow located on the hand knob. The side with the lower delivery pressure setting will remain closed until the primary side has been exhausted (approximately 150 psi residual pressure). The changeover will automatically switch to the reserve bank (secondary side). A fluctuation in pressure will occur at this point at the outlet of the changeover. Downstream line regulator(s) (not included) will eliminate pressure variations to the process.

CRS SERIES

Changeover Regulator Systems provide constant delivery pressure control to instrumentation by incorporating an outlet line regulator and utilize a compact design housing two changeover regulators in a single body. Downstream line or station regulation is not necessary unless various distribution point pressures are required. Operation is the same as described for the PCS Series with approximately 200 psi residual cylinder pressure maintained.

CRS Regulator

STANDARD FEATURES

- Modular Construction allows field installation of additional stations without the need for welding or soldering.
- Diaphragm Seal Isolation Valves allow for complete isolation of the gas source when making a changeout.
- Diffusion-Resistant, Diaphragm Seal Station Valves (on four cylinder or larger systems) ensure that gas purity is maintained

and allow for isolation of individual cylinders on the manifold without interrupting gas flow.

• High Purity Diffusion-Resistant Regulators

minimize the diffusion of air into the system, maintaining the purity of the gas.

OPTIONAL FEATURES

• Double-Braided (All Metal) 3' Stainless

Steel Flexible Cylinder Hoses (available for cylinder leads) extend service life and

provide ease of connecting cylinders.

- Check Valves prevent discharge of gas from manifold and pigtails when changing cylinders.
- Pressure Switches monitor line pres-

and can activate an external alarm (see page 90) when a certain predetermined pressure is reached (see page 88).

• Purge/Vent Valves allow for complete removal of entrapped air and moisture from the system upon start-up, or after a cylinder changeout thus maintaining the high purity nature of the system.

SPECIFICATIONS

Manifolds:

Maximum Inlet Pressure: 3000 psig Flow Coefficient (each station valve):

Cv = 0.43

Inlet Connections:

CGA connection as specified Changeover Regulators:

Maximum Inlet Pressure: 3000 psig

Inlet Pressure Gauge: 0–4000 psig Minimum Inlet Pressure: 300 psig

Gauge Size: 2" Dial

Operating Temperature Range:

-40°F to +165°F

Flow Coefficient: Cv = 0.06

Line Regulators (CRS Series only): Maximum Inlet Pressure: 3000 psig Delivery Pressure Range: 10–150 psig

Delivery Pressure Gauge: 0–200 psig

Gauge Size: 2" Dial

Operating Temperature Range:

-40°F to +165°F

Flow Coefficient: Cv = 0.15

Outlet Connection: 1/4" NPT female

MATERIALS OF CONSTRUCTION

Manifolds:

Metal Parts: Brass or Type 316 Stn. Stl.

as specified when ordering

Seals: Teflon® Check Valve Seats:

EPDM with Brass Systems;

Viton® with Stainless Steel Systems

Station Valve Seats: PCTFE

Regulators: Body:

Brass Systems: Brass Bar Stock

Stainless Steel Systems: Type 316 Stn. Stl. Bar Stock

Gauges:

Brass Systems: Brass

Stn. Stl. Systems: Type 316 Stn. Stl.

Bonnets:

Brass Systems: Brass Bar Stock Stn. Stl. Systems: 300 Series SS Internal Metal Parts Exposed to Gas: Brass Systems: Brass and Stn. Stl. Stn. Stl. Systems: Type 316 Stn. Stl.

Seats: Teflon®

Diaphragms: Type 316 Stainless Steel

Seals: Teflon®

ORDERING INFORMATION

To order a changeover system, complete the part number using the "Part Number Key" shown at right. For example, to order a 4 cylinder, CRS Series brass changeover regulator system, with flexible pigtails, with check valves, and with CGA 580 connections, the part number would be CRSB-4F-4-580. Order by complete part number.

Note: A two cylinder changeover system does not include manifold headers. The cylinders are connected directly to the regulator inlet pigtails (cylinder leads). Advanced does not recommend the use of stainless steel components in manifolds designed for Oxygen service and will not provide such manifolds with CGA 540 connections.

ORDERING INFORMATION

When both sides of the changeover are connected to a gas supply, gas will flow only from the primary side (bank no. 1), which will be indicated by the "In Service" arrow located on the hand knob. The secondary side (bank no. 2) will remain closed. When the gas in the primary bank has been exhausted, the regulator will automatically switch to the secondary, or reserve bank. A fluctuation in outlet pressure will occur at this point. The CRS Series changeover incorporates a built-in line regulator which eliminates this fluctuation and insures a constant delivery pressure to the use point. The PCS Series changeover, supplied without a line regulator, should be utilized for applications incorporating downstream line or station regulation.

Once a changeover has occurred, the hand knob on the changeover regulator should be turned 180° to indicate that bank no. 2 is now in service. This also resets the changeover regulator with bank no. 2 becoming the primary bank.

To replenish the gas supply in bank no. 1, the isolation valve is closed and the empty cylinder(s) is replaced with a full cylinder(s) The isolation valve is then reopened, with bank no. 1 now functioning as the secondary, or reserve side.

Note: The CRS is factory preset to changeover at approximately 200 psig. Liquefied gases or Cryogenic Liquids with vapor pressures less than 300 psig should not be used with the standard changeover systems. Contact your Advanced distributor if lower factory settings are required.

PART NUMBER KEY FOR REGULATOR CHANGEOVER SYSTEMS

Model Number Materials of Construction

(Metal Parts):

Brass = B Type 316 Stainless Steel = S Cylinder Leads (Pigtails)

CGA Connection

316 SS Flexible Hose = F Number

Teflon-Lined Flexible Hose = T Rigid Tubing = Leave Blank

Bracket Style
Bench Model = B
Wall Model = W

Total Number of Cylinders1 (Both Models)

2 (RMW Model only)

Check Valves:
With Check Valves = CV
Without Check Valves = Leave
Blank

OPTIONAL EQUIPMENT AND REPLACEMENT PARTS

Equipment and Replacement Parts	Part No.
Annunciators	See page 90
Pressure Switches	See page 88
Purge/Vent Valves (set of 2 installed prior to isolation valves)	
For Brass Systems	SG6680
For Stainless Steel Systems	SG6681
Teflon® O-Ring Kits (package of 25 ea.)	
For connection between pigtail and station valve	SG6081
For header connection on:	
Brass Systems	SG6082B
Stainless Steel Systems	SG6082S
Replacement Pigtails, Rigid Type	
Brass without Check Valves	SG6640-(CGA)
Brass with Check Valves	SG6641-(CGA)
Stainless Steel without Check Valves	SG6642-(CGA)
Stainless Steel with Check Valves	SG6643-(CGA)
Replacement Pigtails, Flexible Type	
Without Check Valves	SG6638-(CGA)
With Check Valves	SG6639-(CGA)
Replacement Station Valves	
Brass	0202-5083
Stainless Steel	Not Available
Repair Kit for Station Valves	
For Brass Valves	0202-3079
For Stainless Steel Valves	0202-3076
Additional Stations—For adding stations to the following	
existing manifolds (specify left or right bank when ordering)	
Brass System with Rigid Pigtails without Check Valves	SG6660-(CGA)
Brass System with Rigid Pigtails with Check Valves	SG6661-(CGA)
Brass System with Flexible Pigtails without Check Valves	SG6662-(CGA)
Brass System with Flexible Pigtails with Check Valves	SG6663-(CGA)
Stn. Stl. System with Rigid Pigtails without Check Valves	SG6664-(CGA)
Stn. Stl. System with Rigid Pigtails with Check Valves	SG6665-(CGA)
Stn. Stl. System with Flexible Pigtails without Check Valves	SG6666-(CGA)
Stn. Stl. System with Flexible Pigtails with Check Valves	SG6667-(CGA)

STATIONARY CYLINDER PROCESS RACKS (PR SERIES)

Stationary Cylinder Process Racks are designed to provide a safe and cost effective means to mount cylinders and delivery systems where wall space is inaccessible. They are available in two, four and six cylinder configurations and can be supplied with or without process panels. The process panels can be used to mount changeovers, regulators, valves, and other components of a gas delivery system.

These racks are constructed from 11 gauge steel and finished in chemical resistant epoxy. Polypropylene straps with non-slip spring catches safely secure gas cylinders to racks. Steel safety chains can be added as an optional secondary support and security in case of fire. Each rack is supplied with predrilled holes for mounting to a floor. Floor mounting bolts are required (not included). All racks are shipped partially assembled and can ship UPS for freight savings.

Model PR-2-PP Process Rack with Panel

TABLE I

		Dimensions	Approximate
Part No.	Configuration	H" x D" x W"	Weight (lbs)
PR-2	2-Cyl. Process Rack	30 x 12 x 28	41
PR-4	4-Cyl. Process Rack	30 x 24 x 37	88
PR-6	6-Cyl. Process Rack	30 x 24 x 49	96
PR-2-PP	2-Cyl. Process Rack with Panel	72 x 12 x 28	56
PR-4-PP	4-Cyl. Process Rack with Panel	72 x 24 x 37	108
PR-6-PP	6-Cyl. Process Rack with Panel	72 x 24 x 49	120
1			

Of HOTHER QUITIES			
Equipment	Part No.		
Safety Chain (1 each)	SG6215		

Model PR-6-PP Process Rack with Panel

Model PR-6-PP Process Rack with optional mounted CRS Series Changeovers

65 MM, DIRECT READING, VARIABLE AREA FLOWMETERS (SERIES 50 AND 50K)

Series 50 flowmeters offer an economical means of measuring gas or liquid flow at low pressures where \pm 10% accuracy is acceptable. They are suitable for plant and general laboratory applications. These flowmeters are direct reading for air; however, approximate flow ranges for other gases are listed in the Tube Selection Table on the following page.

STANDARD FEATURES

- Ribbed Tubes stabilize float and improve accuracy and readability.
- Borosilicate Glass Tubes allow operating temperatures up to 250°F (100°F for Series 50K).
- Threaded Fittings with Locking Nuts (Standard on Series 50) permit front panel mounting.*
- Unique Valve Design allows bubbletight shutoff.
- Availability of Aluminum, Stainless Steel or Kynar® Construction provides a wide material selection for maximum gas compatibility.

OPTIONAL FEATURES

• Baseplate with Leveling Screws permits

bench use.

- Aluminum Bezel permits flush panel mounting.
- Inlet Filter traps foreign matter, extends

flowmeter life and reduces maintenance.

* Series 50K Flowmeters may be front panel mounted using predrilled holes on rear of flowmeter and self-tapping screws.

SPECIFICATIONS

Maximum Operating Pressure and Temperature:

Series 50: 200 psig at 250°F Series 50K: 150 psig at 100°F

Minimum Operating Temperature: $32^{\circ}F$ Accuracy: $\pm 10\%$ of full scale from 10%

to 100% of range

Repeatability: Within 0.5% of full scale Tube Graduations: Standard cubic centimeters per minute or standard liters per minute of Air depending upon range. See Tube Selection Tables.

Scale Length: 65 mm

Inlet and Outlet Connections: Series 50: 1/8" NPT female Series 50K: 1/4" NPT female Approximate Weight: 0.75 lb

MATERIALS OF CONSTRUCTION

Tubes: Borosilicate Glass with float stops

of Teflon®

Floats: Borosilicate Glass, Type 316 Stainless Steel or Carboloy as specified

in Tube Selection Tables End Blocks: See Table I

Inlet/Outlet Adaptors: See Table I

Side Plates: Aluminum Back Plate: White Plastic Front Plate: Clear Plastic

Seals and Packing: Viton® (other materials

available on special order) Valve: Type 316 Stainless Steel

Series 50 Flowmeter

FM 4711 Optional Panel Mounting Bezel

TABLE I

			Inlet/Outlet
Series	Part No.	End Blocks Material	Adaptor Material
50	FM4350-()	Aluminum	Aluminum
50	FM4360-()	Type 316 Stn. Stl.	Type 316 Stn. Stl.
50K	FM4451-()	Kynar®	None

Where "()" is indicated above, complete the part number by inserting applicable tube number from Tube Selection Table below. Example: FM4350-5. Order by complete part number.

OPTIONAL EQUIPMENT

01 1101(11111 11 4 0 11 11 11 11 11	
Equipment	Part No.
Baseplate	FM4702
Inlet Filter, 2 micron	
Aluminum	FM4741
Type 316 Stainless Steel (Series 50)	FM4746
Type 316 Stainless Steel (Series 50K)	SG6113
Aluminum Bezel for Flush Panel Mounting	FM4711
Replacement Metering Valves	
Flowmeters with Tube Numbers FM4340 –FM4344	0202-4113 (L)
Flowmeters with Tube Numbers FM4345 –FM4346	0202-4114 (M)
Flowmeters with Tube Numbers FM4347 –FM4349	0202-4115 (H)
Replacement Tubes	See Table Below
<u> </u>	

TUBE SELECTION TABLES FOR SERIES 50 AND 50K FLOWMETERS

Flow rates shown are at 70°F and 14.7 psia.

		Air	Argon*	Carbon Dioxide*	Helium*
Tube No.	Float Material	(Actual Graduations)	(Approx. Range)	(Approx. Range)	(Approx. Range)
0	Glass	8.0-50 sccm	4.3–43 sccm	6.1-61 sccm	4.7–47 sccm
1	Glass	5.0-85 sccm	7.1–71 sccm	10.4–104 sccm	7.9–79 sccm
2	Glass	40-440 sccm	38-375 sccm	36-355 sccm	52-513 sccm
3	316 Stn. Stl.	100-950 sccm	81-808 sccm	77–767 sccm	0.15-1.5 slpm
4	Glass	0.2–1.8 slpm	0.15–1.5 slpm	0.16–1.6 slpm	0.38-3.8 slpm
5	316 Stn. Stl.	0.4–3.6 slpm	0.31–3.1 slpm	0.32–3.2 slpm	0.78–7.8 slpm
6	Glass	0.5–7 slpm	0.6–5.9 slpm	0.6–5.9 slpm	1.55–15.5 slpm
7	316 Stn. Stl.	1.0–13 slpm	1.1–11.1 slpm	1.1–10.9 slpm	3.1-30.6 slpm
8	316 Stn. Stl.	6.0–24 slpm	2.1–20.5 slpm	2.0–20.1 slpm	5.7–56.4 slpm
9	Carboloy	4.0–44 slpm	3.8–37.4 slpm	3.6–36.3 slpm	10.4–103 slpm

	Hydrogen*	Nitrogen*	Oxygen*
Tube No.	(Approx. Range)	(Approx. Range)	(Approx. Range)
0	10.5-105 sccm	5.1–51 sccm	4.5–45 sccm
1	17.8-178 sccm	8.7–87 sccm	9.3–93 sccm
2	0.1–1.1 slpm	45-449 sccm	41–411 sccm
3	0.3–2.8 slpm	97–969 sccm	88-884 sccm
4	0.6–6.0 slpm	0.2-1.8 slpm	0.2–1.7 slpm
5	1.2–12.0 slpm	0.4–3.7 slpm	0.3–3.4 slpm
6	2.4–23.8 slpm	0.7–7.1 slpm	0.8–8.2 slpm
7	4.6–45.8 slpm	1.4–13.2 slpm	1.6–15.5 slpm
8	8.5–84.5 slpm	2.5–24.5 slpm	2.9–28.7 slpm
9	15.5–155 slpm	4.5–44.9 slpm	5.3–52.4 slpm

Replacement 7	Гubes
and Packing P	art No.
FM4340	(140)
FM4341	-24
FM4342	-20 ₄
FM4343	
FM4344	2-15
FM4345	9+
FM4346	
FM4347	69
FM4348	
FM4349	

^{*} Series 50 flow tubes are directly calibrated for air at 70°F and 14.7 psia. Flow rates shown for other gases are for reference purposes only. Flow capacities for gases not listed may be obtained by contacting your Advanced Representative.

HEATING AND INSULATION JACKETS FOR GAS CYLINDERS (CJ SERIES)

The CJ Series Jackets are designed to heat and insulate cylinders in order to prevent gases from condensing inside the cylinder. Cylinder jackets are commonly used with hydrocarbon and protocol mixtures to protect against inaccurate calibration and process control when cylinders are exposed to low temperatures.

These cylinder jackets are constructed with a self-limiting heating element that prevents over-heating. As temperature increases, element resistance rises resulting in lower amperage to the heater. Lower amperage causes a temperature drop, thus limiting maximum attainable temperatures. Jackets can be supplied to maintain cylinders at 60°F during outdoor winter conditions or to heat cylinders up to 110°F indoors.

STANDARD FEATURES

- Snug Fitting Design provides even heat distribution for various size cylinders.
- Jacket Construction of fiberglass insulation

with silicon impregnated liner and laminated exterior provides for maximum weather resistance.

• Heating Design will not produce "hot spots" that can cause dangerous cylinder heating conditions.

SPECIFICATIONS

Electrical Power Requirements: 110/120 VAC

Power Cord Length: 6 ft. Power Cord Connection:

110/120 VAC; 3-pin grounding plug

Dimensions: See Table I

Cylinder Temperature: See Table I

CJ Series Heating Jacket

TABLE I

	Fits Cylinders with Dimensions	Jacket Dimensions	Cylinder Temperature
Part No.	OD (in.) x H (in.)	OD (in.) x H (in.)	(°F)
SGCJ-350H	15 x 49	19 x 45	120
SGCJ-300L	9 x 60	14 x 55	60
SGCJ-200L	9 x 56	13.5 x 51	60
SGCJ-150AL	8 x 53	12.5 x 47	60

Note: Other sizes, temperatures and voltage ratings are available. Contact your Advanced Representative.

Cylinder Bench Clamp with Safety Chain (Part No. SG6202C*) –

Same as our SG6202 Cylinder Wall Bracket, but includes a sturdy safety chain for extra security in case of fire.

Two Cylinder Wall Bracket (Part No. SG6207) and Three Cylinder Wall Bracket (Part No. SG6208) –

forged from heavy 11 gauge HR steel, finished inchemical resistant epoxy, and fitted with steel reinforced polyethylene edge guards, they will safely support cylinders up to 12" OD. Each bracketincludes 11/2" wide by 40" long polypropylenestraps with nickel-plated steel non-slip springcatches and buckles for fast adjustment.

Adjustable Cylinder Wall Bracket (Part No. SG6206) –

molded from glass reinforced thermoplastic, it can be adjusted to fit any cylinder from 3.5" OD to 14" OD. The 11/2" wide by 50" long polypropylene strap has a nickel-plated, steel, non-slip spring catch and buckle for fast adjustment. A steel chain with bitsnap closure is provided for secondary security. Recessed mounting holes are located in each end of the bracket for mounting to a wall.

Cylinder Wall Bracket with Safety Chain (Part No. SG6203C*) –

Same as our SG6203 Cylinder Wall Bracket, but includes a sturdy safety chain for extra security in case of fire.

Cylinder Bench Clamp (Part No. SG6202*) -

made of cast aluminum, it can safely secure cylinders up to 14" OD to most bench and table tops. The bracket clamps to any flat surface up to 17/8" thick with a minimum 11/2" overhang and is tightened by two steel screws with sliding T-handles and swivel pads. The 1 inch wide by 54" long nylon strap has a nickel-plated, steel, non-slip spring catch and buckle for fast adjustment.

Cylinder Wall Bracket (Part No. SG6203*) –

made of cast aluminum, it can support cylinders up to 14" OD. The 1 inch wide by 54" long nylon strap has a nickel-plated, steel, non-slip spring catch and buckle for fast adjustment. Recessed mounting holes are located in each end of the bracket for mounting to a wall, or any vertical surface.

8 Ounce Snoop® Liquid Leak Detector (Part No. 0202–3032) –

designed for leak-testing pressurized gas systems, it is provided in a squeezable plastic bottle with an extendible 12" tube for detecting gas leaks in hard-to-reach places.

Note: Snoop® exceeds the performance requirements of military specifications: Mil-L-25567D Type 1, Leak Detection Compound, Oxygen Systems, for use over a temperature range of +27°F to +200°F.

Teflon® TFE Thread Sealant Tape (Part No. 0202-5126)—

designed for application on 1/8", 1/4" and 3/8" male tapered pipe threads as a lubricant to prevent galling of pipe threads. The tape measures 1/4" wide x 576" long and is supplied in a plastic case. Note: Tape is manufactured to conform to military specifications: MIL-T-27730A and for use with temperatures up to 450°F.

Valve Handwheel Covers -Package of 12 (Part No. SG6217) -

made of heavy duty vinyl, they install on the cylinder valve handle to provide a cushion grip for ease of opening and closing high pressure cylinders.

1 Gallon Snoop® Liquid Leak Detector (Part No. 0202-3031) -

designed for use in filling small trays or tanks for immersion leak-testing of pressurized components, or for refilling the smaller 8 oz. bottles (0202–3032).

*Replacement Strap (Part No. SG6209) –

The nylon replacement strap for Models SG6202 and SG6203.

Cylinder carts are made of arc welded tubular steel construction and finished with scratch resistant, high gloss electrostatically applied powder coat oven baked paint. All models roll quietly and smoothly on ball bearing, semi-pneumatic rubber wheels.

Four Wheel Double Cylinder Cart (Part No. SG6214) –

designed to safely hold and easily transport two 91/4" OD cylinders. The cart has two retractable rear casters that drop into place when needed for additional load handling safety or lock into the frame when not required. Cylinder binding chains secure cylinders in place and double grip handle bars provide for good load control.

Two Wheel Single Cylinder Cart (Part No. SG6210) –

designed to safely and easily transport a cylinder up to 10" OD. The cylinder is securely held by a spring-loaded holdchain which is encased in a plastic tube to prevent rattling.

Four Wheel Single Cylinder Cart (Part No. SG6212) –

designed to safely hold and easily transport a cylinder up to 10" OD. The cart has two rear casters which fall into place automatically after removing a locking pin when the cart is leaned backward. The operator carries no load. The rear wheel assembly can be locked into the retracted position for fast wheeling if desired. The cylinder is securely held by a spring-loaded hold-chain which is encased in a plastic tube to prevent rattling.

Medical E Single Cylinder Cart (Part No. SG6218) –

designed to safely hold and carry one small medical cylinder (D & E styles) up to 41/2" OD. A thumb screw is located in top ring to secure the cylinder in place.

Medical E Double Cylinder Cart (Part No. SG6219) –

designed to safely hold and carry two small medical cylinders (D & E styles) up to 41/2" OD. A thumb screw is located in top ring to secure the cylinders in place.

Small Cylinder Stand (Part No. SG6201) –

made of sturdy lightweight plastic, the two thumb screws provide a tight fit for cylinders from 3" to 43/8" OD. Three recessed mounting holes are located on the base for floor mounting. These stands are ideal for medical "D" or "E" type cylinders.

Adjustable Cylinder Stand (Part No. SG6204) –

made of cast aluminum, the stand hinges open so it can be placed around the cylinder without lifting the cylinder. The three adjustable uprights can be adjusted to accommodate cylinders from 6" OD to 91/4" OD.

Cylinder Stand (Part No. SG6200) –

used for securing cylinders where a wall or bench is not available, these stands are made of cast aluminum, and are hinged so they can be placed around the cylinder without lifting the cylinder. Four thumb screws provide a tight fit after closing. The stand fits any cylinder with an 8" to 9" OD.

Cylinder Inverter (Part No. SG6205) –

This device allows for liquid withdrawal from cylinders not equipped with eductor tubes. They are made of heavy gauge steel and screw onto the threaded collar of a compressed gas cylinder providing a secure connection for inverting the cylinder. The inverter can be used with any small cylinder having a standard threaded collar and cap assembly.

UOP MOLECULAR SIEVES*

UOP Molecular Sieves* are synthetically produced, crystalline metal aluminosilicates that have been activated for adsorption by removing their water of hydration. Unlike other adsorbents, Molecular Sieves have a precise uniform size and molecular dimension. According to the size of these pores, molecules may be readily adsorbed, slowly adsorbed or completely excluded. This sieve-like selectivity, based on molecular size, plus a selectable preference for polar or polarizable molecules, gives Molecular Sieves an extremely high level of adsorption efficiency, and permits close tailoring of the adsorbent to the specific use. Pore sizes vary by the "type" of Molecular Sieve; for example, Type 4A has a uniform pore size of 4 angstroms while Type 13X has a uniform pore size of 10 angstroms.

Molecular Sieves are available in a variety of forms which include powder, pellets, mesh and beads:

- Powders are white finely divided freeflowing particles with an average diameter of 4–5 microns.
- Pellets are cylindrically formed products whose diameters are controlled (1/16" or 1/8" as specified).
- Mesh are granular shaped products, and Beads are spherically shaped products. The sizes of both of these products are specified jointly by the screen sizes that the material will pass through and be retained by. For example, a 14 x 30 mesh product will pass through a 14 mesh screen, and be retained by a 30 mesh screen. Listed below are the screen openings for some common screen sizes.

Available Molecular Sieve Packages

UOP Molecular Sieves are available in a variety of package sizes from 1/2 lb. up to 50 lbs.

* Advanced Specialty Gas Equipment repackages and markets Molecular Sieves manufactured by UOP.

GAS COMPATIBILITY

The compatibility data* shown on the following pages has been compiled to assist in evaluating the appropriate materials to use in handling various gases. It is extremely important that all gas control equipment be compatible with the gas being passed through it. The use of a device that is not compatible with the service gas may damage the unit and cause a leak that could result in property damage or personal injury. To reduce potentially dangerous situations, always check for compatibility of materials before using any gases in your gas control equipment.

Since combinations of gases are virtually unlimited, mixtures (except for Ethylene Oxide/Halocarbon and Ethylene Oxide/CO2 sterilizing gas mixtures) are not listed in the Compatibility Chart. Before using a gas mixture or any gas not listed in the chart, we strongly urge you to contact your nearest Advanced Representative for information and assistance.

DIRECTIONS

To use this chart, proceed as follows:

- 1. Locate the gas you are using in the first column.
- 2. Compare the materials of construction for the equipment you intend to use with the "materials of construction" shown in the Compatibility Chart. Then use the "Key to Materials Compatibility" to determine compatibility.

KEY TO MATERIALS COMPATIBILITY

- **S:** Satisfactory for use with the intended gas.
- **U:** Unsatisfactory for use with the intended gas.
- **I:** Insufficient data available to determine compatibility with the intended gas.

- **C1 thru C8:** Conditionally acceptable for use with the intended gas as follows:
- C1: Satisfactory with brass having a low (65–70% maximum) copper content.

 Brass with higher copper content is unacceptable.
- C2: Satisfactory with acetylene; however, cylinder acetylene is packaged dissolved in a solvent (generally acetone) which may be incompatible with these elastomers.
- C3: Compatibility varies depending on specific Kalrez® compound used. Consult E.I. DuPont for information on specific applications.
- C4: Satisfactory with brass, except where acetylene or acetylides are present.
- **C5:** Generally unsatisfactory, except where specific use conditions have proven acceptable.
- C6: Satisfactory below 1000 psig.
- C7: Satisfactory below 1000 psig where gas velocities do not exceed 30 ft./sec.
- **C8:** Material compatibility depends on condition of use.

IMPORTANT

This information is for experienced operators who know the general principles and the safety precautions to be observed in handling specialty gases and associated equipment. If you are not certain you fully understand these safety precautions, we urge you to obtain and read the applicable Material Safety Data Sheet (MSDS) and Equipment Instruction Booklet.

The information contained in the Compatibility Chart has been compiled by Advanced from what it believes are authoritative sources and it is offered solely as a convenience to its customers. While Advanced believes that this information is accurate and factual as of the date of this publication, this information is intended to be used only as a guide in providing general information with respect to the products mentioned; and, therefore, it is not to be taken as a warranty or representation for which Advanced assumes legal responsibility.

Since the user's product formulation, specific use application, and conditions of use are all outside Advanced's control, Advanced makes no warranty or representation regarding the result which may be obtained by the user. It shall be the responsibility of the user to determine the suitability of the user's gas control equipment for use with the products mentioned.

* This chart has been prepared for use with dry (anhydrous) gases at normal operating temperature of 70°F. Information may vary if different operating conditions exist. Systems and equipment used in oxidizer gas service (e.g., Oxygen or Nitrous Oxide) must be cleaned for oxidizer service.

GAS COMPATIBILITY CHART

								MA	ATER	IALS	OF (CON	STRL	JCTI	ON				
			:(C - 2-	N	/letal	s	no.				Plas	tics				Ela	stor	ers	
Common Name	Chemical Formula	Brass	303 Stainless Steel	316 Stainless Steel	Aluminum	Zinc	Copper	Monel	PCTFE	Teflon	Tefzel	Kynar	PVC	Polycarbonate	Kalrez	Viton	Buna-N	Neoprene	Polyurethane
Acetylene	C ₂ H ₂	C1	S	S	1	U	U	S	S	S	S	S	1	1	S	C2	C2	C2	C2
Air	C ₂ (1 ₂	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Allene	— C ₃ H ₄	S	S	S	S	1	U	S	S	S	S	S	1	1	S	S	S	S	1
Ammonia	NH ₃	U	S	S	S	U	U	S	S	S	S	U	S	U	C3	U	S	S	U
Argon	Ar	s	S	S	S	S	S	S	S	S	S	S	S	s	S	S	S	S	s
Arsine	AsH ₃	S	S	S	C5	1	S	S	S	S	S	S	S	1	S	S	S	S	U
Boron Trichloride	BCl ₃	U	S	S	-	ĩ	S	S	S	S	S	ı	S	1	C3	ı	ı	ı	1
Boron Trifluoride	BF ₃	S	S	S	S	1	S	S	S	S	S	1	S	1	C3	1	1	<u>.</u>	
1,3-Butadiene	C ₄ H ₆	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	U	S	U
Butane	C ₄ H ₁₀	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	s
1-Butene	C ₄ H ₈	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	S
Cis-2-Butene	C ₄ H ₈	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	s
Trans-2-Butene	C ₄ H ₈	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	S
Carbon Dioxide	CO ₂	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Carbon Monoxide	CO	S	S	S	S	S	S	S	S	S	S	S	S	S	S	1	S	S	S
Carbonyl Sulfide	COS	S	S	S	S	î	S	S	S	S	S	S	S	1	ï	S	1	1	ì
Chlorine	Cl ₂	U	S	S	U	U	U	S	S	S	S	S	U	U	S	S	U	U	U
Deuterium	D ₂	S	S	S	s	S	s	S	S	s	S	S	S	1	S	S	S	S	s
Diborane	B ₂ H ₆	S	S	S	S	1	S	S	S	S	S	1	1	1	S	1	1	1	1
Dichlorosilane	H ₂ SiCl ₂	1	S	S	L	1	1	S	S	S	S	S	1	1	S	1	1	1	1
Dimethyl Ether	C ₂ H ₆ O	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	ī
Ethane	C ₂ H ₆	S	S	S	S	S	S	S	S	S	S	S	S	1	S	S	S	S	s
Ethyl Acetylene	C ₄ H ₆	1	S	S	s	1	U	S	S	S	1	S	1	1	S	S	1	S	ī
Ethyl Chloride	C ₂ H ₅ Cl	S	S	S	U	1	S	S	S	S	S	S	U	U	S	S	S	S	U
Ethylene	C ₂ H ₄	S	S	S	S	S	S	S	S	S	S	S	1	1	S	S	S	S	Ĭ
Ethylene Oxide**	C ₂ H ₄ O	C4	S	S	C5	1	U	1	S	S	1	ı	U	U	C3	U	U	U	U

 $[\]ensuremath{^{**}}$ Satisfactory for use with EPR (Ethylene Propylene Rubber) and EPDM.

GAS COMPATIBILITY CHART (continued)

								MA	ATER	IALS	OF (CON	STRU	JCTI	ON				
				٨	/letal	s					Plas	tics				Ela	stom	ers	
Common Name	Chemical Formula	Brass	303 Stainless Steel	316 Stainless Steel	Aluminum	Zinc	Copper	Monel	PCTFE	Teflon	Tefzel	Kynar	PVC	Polycarbonate	Kalrez	Viton	Buna-N	Neoprene	Polyurethane
Ethylene Oxide/Carbon I	Dioxide Mixtures**	C4	S	S	1	ı	U	ı	s	S	ı	ı	U	U	C3	U	U	U	U
Ethylene Oxide/Halocarb	on Mixtures**	C4	S	S	1	ı	U	ı	S	S	ı	ı	U	U	C3	U	U	U	U
Ethylene Oxide/HCFC-12	24	C4	S	S	ı	ı	U	ı	S	S	ı	ı	U	U	C3	U	U	U	U
Halocarbon 11	CCI ₃ F	s	S	S	C5	I	S	S	S	S	S	S	U	U	C3	S	S	U	U
Halocarbon 12	CCl ₂ F ₂	s	S	S	C5	ı	S	S	S	S	S	S	U	U	C3	s	S	s	S
Halocarbon 13	CCIF ₃	S	S	S	C5	ı	S	S	S	S	S	S	U	U	С3	S	S	s	S
Halocarbon 13B1	CBF ₃	S	S	S	C5	ı	S	S	S	S	S	S	U	U	С3	S	S	s	S
Halocarbon 14	CF ₄	s	S	S	C5	ı	S	S	S	S	S	S	U	U	C3	S	S	S	S
Halocarbon 21	CHCl ₂ F	S	S	S	C5	ı	S	S	S	S	S	S	U	U	C3	U	U	S	S
Halocarbon 22	CHCIF ₂	S	S	S	C5	ı	S	S	S	S	S	S	U	U	С3	U	U	S	U
Halocarbon 23	CHF ₃	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	ı	Ι	ı	S
Halocarbon 113	CCI ₂ FCCIF ₂	S	S	S	C5	U	S	S	S	S	S	S	U	U	C3	S	S	S	S
Halocarbon 114	C ₂ Cl ₂ F ₄	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	S	S	S	S
Halocarbon 115	C ₂ CIF ₅	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	S	S	S	S
Halocarbon 116	C ₂ F ₆	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	ı	ı	ı	S
Halocarbon 142B	C ₂ H ₃ ClF ₂	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	U	S	S	S
Halocarbon 152A	C ₂ H ₄ F ₂	S	S	S	C5	I	S	S	S	S	S	S	U	U	C3	U	S	S	S
Halocarbon C-318	C ₄ F ₈	S	S	S	C5	I	ı	S	S	S	S	S	U	U	C3	S	S	S	S
Halocarbon 502	CHCIF ₂ /CCIF ₂ -CF ₃		S	S	C5	I	ı	S	S	S	I	S	U	U	С3	S	S	S	S
Halocarbon 1132A	C ₂ H ₂ F ₂	S	S	S	C5	I	S	S	1	S	S	S	U	U	C3	1	ı	ı	S
Helium	He	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Hydrogen	H ₂	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Hydrogen Chloride	HCl	U	S	S	ı	U	U	S	S	S	S	S	S	U	S	S	U	U	U
Hydrogen Sulfide	H ₂ S	U	S	S	S	I	ı	S	S	S	S	S	S	S	S	U	S	S	S
Isobutane	C ₄ H ₁₀	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	S
Isobutylene	C ₄ H ₈	S	S	S	S	I	S	S	S	S	S	S	S	1	S	S	S	S	ı

 $^{^{\}star\star}$ Satisfactory for use with EPR (Ethylene Propylene Rubber) and EPDM.

GAS COMPATIBILITY CHART (continued)

								MA	ATER	IALS	OF (CON	STRU	JCTI	ON				
				٨	/letal	s					Plas	tics				Ela	ston	ners	
Common Name	Chemical Formula	Brass	303 Stainless Steel	316 Stainless Steel	Aluminum	Zinc	Copper	Monel	PCTFE	Teflon	Tefzel	Kynar	PVC	Polycarbonate	Kalrez	Viton	Buna-N	Neoprene	Polyurethane
Isopentane	C ₅ H ₁₂	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	S
Krypton	Kr	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Methane	CH ₄	S	S	S	S	S	S	S	S	s	S	S	S		S	S	S	s	S
Methyl Chloride	CH ₃ Cl	S	S	S	U	U	S	S	S	S	S	S	ı		S	S	U	U	U
Methyl Mercaptan	CH ₃ SH	S	S	S	U	1	U	U	S	s	S	1	1	1	S	ı	ı	s	1
Neon	Ne	S	S	S	S	S	S	S	S	s	S	S	S	S	S	S	S	s	S
Nitric Oxide	NO	U	S	S	S	1	S	S	S	s	S	ı	S	1	S	1	ı	S	1
Nitrogen	N ₂	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	s
Nitrogen Dioxide	NO ₂	1	S	S	S	ı	ı	S	S	S	S	ı	U	1	S	U	U	U	U
Nitrous Oxide	N ₂ O	S	C6	C6	C5	S	S	S	S	C5	S	S	S	ī	C3	S	S	S	S
Oxygen	O ₂	S	C7	C7	C7	S	S	S	S	C5	S	S	S	S	C3	C8	C8	C8	s
Perfluoropropane	C ₃ F ₈	S	S	S	S	_	S	S	S	s	S	ı	ı	1	1	ı	S	s	ī
Phosphine	PH ₃	ı	S	S	S	_	ı	S	S	s	S	ı	ı	ı	S	ı	ı	1	ı
Phosphorous Pentafluoride	PF ₅	ı	S	S	ı	-	ı	S	S	S	S	ı	ı	ı	1	ı	ı	ı	ı
Propane	C ₃ H ₈	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	S	S	s
Propylene	C ₃ H ₆	S	S	S	S	S	S	S	S	S	S	S	S	U	S	S	U	U	U
Propylene Oxide	C ₃ H ₆ O	_	S	S	_	_	_	_	S	S	S	Ι	U	S	C3	U	U	U	U
Refrigerant Gases	_								See	e Halo	carb	ons							
Silane	SiH ₄	S	S	S	S	_	S	S	S	S	S	S	S	ı	S	S	S	S	S
Silicon Tetrachloride	SiCl ₄	1	S	S	U	ı	ı	S	S	S	ı	ı	U	1	C3	ı	ı	ı	
Silicon Tetrafluoride	SiF ₄	S	S	S	S	ı	S	S	S	S	S	S	S	1	C3	S	S	S	S
Sulfur Dioxide	SO ₂	U	S	S	S	U	U	S	S	S	S	S	S	U	S	S	U	U	S
Sulfur Hexafluoride	SF ₆	S	S	S	S	1	S	S	S	S	S	S	S		C3	S	S	S	S
Trichlorosilane	HSiCl ₃	1	S	S	U	1	ı	S	S	S	ı	ı	U		C3	ı	ı	ı	
Vinyl Methyl Ether	C ₃ H ₆ O	S	S	S	S	ı	U	S	S	S	S	ı	ı	U	C3	ı	ı	ı	1
Xenon	Xe	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S

CONVERSION FACTORS

DENSITY

TO OBTAIN

	gms/cm³	kg/m³	lbs/ft ³	lbs/in ³	lbs/U.S. gal
MULTIPLY			ВҮ		
gms/cm ³	_	1000	62.428	0.0361273	8.3454
kg/m³	0.001	_	0.062428	3.61273 x 10 ⁻⁵	0.0083454
lbs/ft ³	0.0160185	16.018463	_	5.78704 x 10 ⁻⁴	0.13368
lbs/in ³	27.679905	27,679.9	1728	_	231
lbs/U.S. gal	0.1198264	119.8264	7.4805195	0.004329	_

FLOW

TO OBTAIN

	cm ³ /min (ml/min)	cm ³ /sec (ml/sec)	ft ³ /hr	ft ³ /min	m³/hr	m³/min	L/hr	Lpm
MULTIPLY				В	Υ			
cm ³ /min (ml/min)	_	0.0166667	0.0021189	0.0000353	0.00006	0.000001	0.06	0.001
cm ³ /sec (ml/sec)	60	_	0.1271340	0.0021189	0.0036	0.00006	3.6	0.06
ft ³ /hr	471.9474	7.865790	_	0.0166667	0.0283168	0.0004719	28.31685	0.4719474
ft ³ /min	28,316.85	471.9474	60	_	1.699008	0.0283168	1699.008	28.31685
m ³ /hr	16,666.67	277.7778	35.31467	0.5885777	_	0.0166667	1000	16.66667
m ³ /min	1,000,000	16,666.67	2118.876	35.31467	60	_	60,000	1000
L/hr	16.66667	0.2777778	0.0353147	0.0005885	0.001	0.0000167	_	0.0166667
Lpm	1000	16.66667	2.118876	0.0353147	0.06	0.001	60	_

LENGTH

TO OBTAIN

	Å	cm	ft	in	m	micron	mm	yd
MULTIPLY				BY				
Å	_	1 x 10 ⁻⁸	3.2808399 x 10 ⁻¹⁰	3.937008 x 10 ⁻⁹	1 x 10 ⁻¹⁰	0.0001	0.0000001	1.0936133 x 10 ⁻¹⁰
cm	1 x 108	_	0.0328084	0.3937008	0.01	10,000	10	0.0109361
ft	3.048 x 10 ⁹	30.48	_	12	0.3048	304,800	304.8	0.3333333
in	2.54 x 10 ⁸	2.54	0.0833333	_	0.0254	25,400	25.4	0.0277778
m	1 x 10 ¹⁰	100	3.2808399	39.3700787	_	1,000,000	1000	1.0936133
micron	10,000	0.0001	3.2808399 x 10 ⁻⁶	3.9370079 x 10 ⁻⁵	0.0000010	_	0.001	1.0936133 x 10 ⁻⁶
mm	10,000,000	0.1	0.00328084	0.03937008	0.001	1,000	_	0.0010936
yd	9.144 x 10 ⁹	91.44	3	36	0.9144	914,400	914.4	_

CONVERSION FACTORS (continued)

PRESSURE

TO OBTAIN

	atm	bars	ft of H ₂ O at 60°F	in of Hg at 0°C	in of H ₂ O at 60°F	kg/cm²	kpa	mm of Hg at 0°C (torr)	psi
MULTIPLY	-20				BY				
atm	_	1.01325	33.932	29.921	407.1827	1.0332	101.3171	760	14.696
bars	0.98692	<u></u>	33.4883	29.530	401.8596	1.019716	100	750.062	14.50368
ft of H ₂ O at 60°F	0.02947	0.029891		0.882646	12	0.03048	2.9890	22.4198	0.433107
in of Hg at 0°C	0.03342	0.033864	1.1340	-	13.6	0.034532	3.376895	25.4	0.49115
in of H ₂ O at 60°F	0.00246	0.002499	0.083333	0.073556	_	0.00254	0.249089	1.86832	0.03609
kg/cm ²	0.96787	0.980665	32.8084	28.95903	393.7008	_	98.03922	735.5592	14.22334
kpa	0.00987	0.010	0.33456	0.29613	4.01472	0.01020	-	7.5006	0.14504
mm of Hg at 0°C (torr)	0.00132	0.001333	0.044603	0.03937	0.535240	0.001360	0.133322	.—:	0.019337
psi	0.06805	0.068948	2.3089	2.0360	27.70851	0.070307	6.89465	51.715	_

TEMPERATURE

TO OBTAIN

	°C	°F	°K	°R							
MULTIPLY	ВУ										
°C + 17.78	_	1.8	_	-							
°C + 273.16	1-	A5000	1	_							
°F – 32	5/9	-	_	_							
°F + 459.72	==	F	5 - 2	1							
°K – 273.16	1	(_	_							
°R – 459.72	_	1	_	-							

VOLUME

TO OBTAIN

	cm³*	ft³	in ³	m³	gal (U.S. liquid)	L
MULTIPLY			E	ЗҮ		
cm³*	ss	0.00003531	0.0610237	0.000001	0.0002641	0.001
ft ³	28,316.847	20-0	1728	0.02831685	7.480519	28.316847
in ³	16.387064	0.0005787	-	0.00001637	0.0043290	0.0163871
m ³	1,000,000	35.31467	61,023.74	_	264.172	1000
gal (U.S. liquid)	3785.412	0.13368056	231	0.00378541	0-0	3.785412
L	1000	0.03531467	61.02374	0.001	0.2641721	<u> </u>

 $^{*1} cm^3 = 1 ml$

CONVERSION FACTORS (continued)

WEIGHT

TO OBTAIN

	gms	kg	mg	oz*	lbs*	tons (short, U.S.)
MULTIPLY			В	Υ		
gms	_	0.001	1000	0.0352740	0.0022046	1.102 x 10 ⁻⁶
kg	1000	_	1,000,000	35.273962	2.2046226	0.0011023
mg	0.001	0.000001	_	3.5274 x 10 ⁻⁵	2.2046 x 10 ⁻⁶	1.102 x 10 ⁻⁹
oz*	28.34952	0.0283495	28,349.5	_	0.0625	3.125 x 10 ⁻⁵
lbs*	453.59237	0.4535924	453,592	16	_	0.0005
tons (short, U.S.)	907,185	907.18474	9.07185 x 10 ⁸	32,000	2000	_

^{*} avoirdupois

CONCENTRATION

EXPONENTIAL EQUIVALENTS

Concentration	Equivalent
1,000,000 ppm	100%
100,000 ppm	10.0%
10,000 ppm	1.0%
1,000 ppm	0.1%
100 ppm	0.01%
10 ppm	0.001%
1 ppm	0.0001%
1,000 ppb	1 ppm
	0.1 ppm
10 ppb	0.01 ppm
1 ppb	0.001 ppm
100 ppm 10 ppm 1 ppm 1,000 ppb 100 ppb 10 ppb	0.01% 0.001% 0.0001% 1 ppm 0.1 ppm 0.01 ppm

Scientific Notation	Equivalent
1 x 10 ¹⁰	10,000,000,000
1 x 109	1,000,000,000
1 x 108	100,000,000
1 x 10 ⁷	10,000,000
1 x 106	1,000,000
1 x 10 ⁵	100,000
1 x 10 ⁴	10,000
1 x 10 ³	1,000
1 x 10 ²	100
1 x 10 ¹	10

Scientific Notation	Equivalent
1 x 10-1	0.1
1 x 10-2	0.01
1 x 10-3	0.001
1 x 10-4	0.0001
1 x 10-5	0.00001
1 x 10-6	0.000001
1 x 10-7	0.000001
1 x 10-8	0.0000001
1 x 10 ⁻⁹	0.00000001
1 x 10 ⁻¹⁰	0.000000001

MISCELLANEOUS PHYSICAL CONSTANTS

Numerical Constant	Value	Units
Avogadro's Number	6.022045 x 10 ²³	Molecules/gm-mole
Gas-Law Constant R	1.98719	cal/(gm-mole)(°K)
	1.98719	Btu/(lb-mole)(°R)
	82.0568	(cm3)(atm)/(gm-mole)(°K)
	0.0820568	(liter)(atm)/(gm-mole)(°K)
	10.7314	(ft ³)(lb)/(in ²)(lb-mole)(°R)
	0.730228	$(ft^3)(atm)/(lb-mole)(^\circ R)$

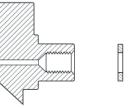
MOISTURE CONVERSION TABLE

	Point	Vapor Pressure (Water/Ice in Equilibrium)	PPM on Volume Basis at 760 mm	Relative Humidity	PPM on Weight
°C	°F	mm of Mercury	of Hg Pressure	at 70°F%	Basis in Air
-90	-130	0.00007	0.0921	0.00037	0.057
-88	-126	0.00010	0.132	0.00054	0.082
-86	-123	0.00014	0.184	0.00075	0.11
-84	-119	0.00020	0.263	0.00107	0.16
-82	-116	0.00029	0.382	0.00155	0.24
-80	-112	0.00040	0.562	0.00214	0.33
-78	-108	0.00056	0.737	0.00300	0.46
-76	-105	0.00077	1.01	0.00410	0.63
-74	-101	0.00105	1.38	0.00559	0.86
-72	-98	0.00143	1.88	0.00762	1.17
-70	-94	0.00194	2.55	0.0104	1.58
-68	-90	0.00261	3.43	0.0140	2.13
-66	-87	0.00349	4.59	0.0147	2.84
-64	-83	0.00464	6.11	0.0248	3.79
-62	-80	0.00614	8.08	0.0248	5.01
-60	-76	0.00808	10.6	0.0430	6.59
-58	-70 -72	0.0106	13.9	0.0565	8.63
	-72 -69	0.0108			11.3
-56			18.2	0.0735	
-54	-65	0.0178	23.4	0.0948	14.5
-52	-62	0.0230	30.3	0.123	18.8
-50	-58	0.0295	38.8	0.157	24.1
-48	-54	0.0378	49.7	0.202	30.9
-46	-51	0.0481	63.3	0.257	39.3
-44	-47	0.0609	80	0.325	49.7
-42	-44	0.0768	101	0.410	62.7
-40	-40	0.0966	127	0.516	78.9
-38	-36	0.1209	159	0.644	98.6
-36	-33	0.1507	198	0.804	122.9
-34	-29	0.1873	246	1.00	152
-32	-26	0.2318	305	1.24	189
-30	-22	0.2859	376	1.52	234
-28	-18	0.351	462	1.88	287
-26	-15	0.430	566	2.3	351
-24	-11	0.526	692	2.81	430
-22	-8	0.640	842	3.41	523
-20	-4	0.776	1020	4.13	633
-18	0	0.939	1240	5.00	770
-16	3	1.132	1490	6.03	925
-14	7	1.361	1790	7.25	1110
-12	10	1.632	2150	8.69	1335
-10	14	1.950	2570	10.4	1596
-8	18	2.326	3060	12.4	1900
-6	21	2.765	3640	14.7	2260
-4	25	3.280	4320	17.5	2680
-2	28	3.880	5100	20.7	3170
0	32	4.579	6020	24.4	3640
2	36	5.294	6970	28.2	4330
4	39	6.101	8030	32.5	4990
6	43	7.013	9230	37.4	5730
8	46	8.045	10590	42.9	6580
10	50	9.029	12120	49.1	7530
12	54	10.52	13840	56.1	8600
14	57	11.99	15780	63.9	9800
16	61	13.63	17930	72.6	11140
18	64	15.48	20370	82.5	12650
20	68	17.54	23080	93.5	14330

ABBREVIATIONS & SYMBOLS

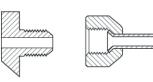
Symbol	Definition
Å	angstrom(s)
ACGIH	American Conference of Governmental Industrial Hygienists
ASTM	American Society for Testing Materials
atm	atmosphere(s)
avg	average
Btu	British thermal unit(s)
cal	calorie(s)
CAS	Chemical Abstract Services
сс	cubic centimeters
ccm	cubic centimeters per minute
CGA	Compressed Gas Association
cm	centimeter
cm ²	square centimeter
cm ³	cubic centimeter
СР	Chemically Pure
Ср	specific heat at constant pressure
CSA	Canadian Standards Association
Cv	coefficient of flow
°C	degree(s) Centigrade
°F	degree(s) Fahrenheit
°K	degree(s) Kelvin
°R	degree(s) Rankine
ea	each
EPA	Environmental Protection Agency
EPDM	Ethylene-Propylene Terpolymer
EPR	Ethylene Propylene Rubber
ft	foot, feet
ft3	cubic foot (feet)
gal	gallon(s)
gms	gram(s)
HCFC-124	Hydrochlorofluorocarbon
hr	hour
Hz	hertz

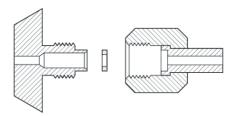
Symbol	Definition
ID	identification or inside diameter
in, ins	inch(es)
in ³	cubic inch
kg	kilogram(s)
kpa	kilopascal(s)
lb, lbs	pound(s)
L	liter(s)
Lpm	liters per minute
m	meter(s)
m ³	cubic meter(s)
mA	milliampere
max	maximum
mg	milligram(s)
min	minute(s)
ml	milliliter(s)
mm	millimeter(s)
mol. wt.	molecular weight
MOS	Metal Oxide Semiconductor
NA	not applicable
nbp	normal boiling point
NER	normal evaporation rate
NF	National Formulary
NIST	National Institute of Standards and Technology
No	number
nom	nominal
NOS	not otherwise specified
NPT	national pipe thread
NTP	normal temperature and pressure
OD	outside diameter
OSHA	Occupational Safety and Health Administration
oz	ounce(s)
ppb	part(s) per billion
ppm	part(s) per million
psi	pound(s)-force per square inch


Symbol	Definition
psia	pound(s)–force per square inch absolute
psig	pound(s)–force per square inch gauge
scc	standard cubic centimeters
sccm	standard cubic centimeters per minute
sccs	standard cubic centimeters per second
scfh	standard cubic feet per hour
scfm	standard cubic feet per minute
scfs	standard cubic feet per second
sec	second(s)
slpm	standard liters per minute
sp. gr.	specific gravity
sp. vol.	specific volume
SS, Stn. Stl.	Stainless Steel
STEL	Short Term Exposure Limit
STP	Standard Temperature and Pressure
Temp.	Temperature
THC	Total Hydrocarbon Content
TLV	Threshold Limit Value
tp	triple point
TWA	Time Weighted Average
UHP	Ultra High Purity
UN	United Nations
USP	United States Pharmacopoeia
VAC	volts alternating current
VDC	volts direct current
wt%	weight percent (percent by weight)
wt. ppm	weight parts per million
yd	yard(s)
>	greater than
<	less than
≥	greater than or equal to
≤	less than or equal to

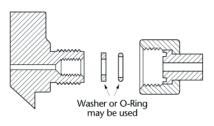
CGA CONNECTIONS

CGA 110


.3125-32UNEF-2B-RH-INT

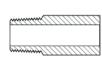

CGA 165

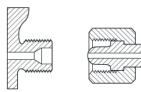
.4375-20UNF-2A-RH-EXT (1/4" SAE Flare)


CGA 170

.5625-18UNF-2A-RH-EXT

CGA 180


.625-18UNF-2A-RH-EXT

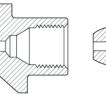

.375-18NGT-RH-INT

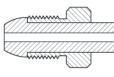
CGA 280

.745-14NGO-RH-EXT

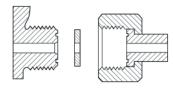
CGA 290

.745-14NGO-LH-EXT


.750-16UNF-2A-RH-EXT (1/2" SAE Flare)



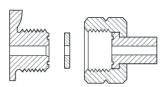
CGA 296


.803-14UNS-2B-RH-INT

CGA 320

.825-14NGO-RH-EXT (Flat Nipple)

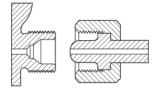
CGA 326


.825-14NGO-RH-EXT (Small Round Nipple)

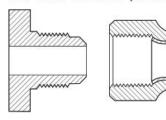
CGA 330

.825-14NGO-LH-EXT (Flat Nipple)

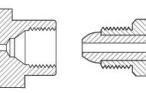
CGA 346


.825-14NGO-RH-EXT (Large Round Nipple)

.825-14NGO-LH-EXT (Round Nipple)

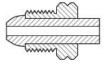


CGA CONNECTIONS (continued)


CGA 440

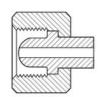
.875-14UNF-2A-RH-EXT (5/8" SAE Flare)

CGA 500


.885-14NGO-RH-INT (Bullet Nipple)

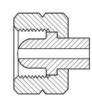
CGA 510

.885-14NGO-LH-INT (Bullet Nipple)

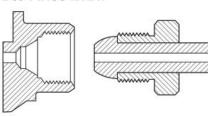


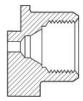
CGA 540

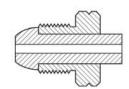
.903-14NGO-RH-EXT



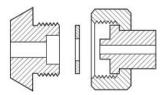
CGA 555

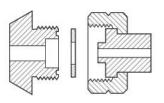

.903-14NGO-LH-EXT


CGA 580


.965-14NGO-RH-INT

CGA 590

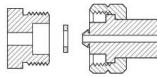

.965-14NGO-LH-INT


CGA 660

1.030-14NGO-RH-EXT (Face Washer)

1.030-14NGO-LH-EXT (Face Washer)

CGA 677

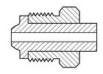

1.030-14NGO-LH-EXT (Round Nipple)

CGA 678

1.030-14NGO-LH-EXT (Recessed Washer)

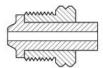
CGA 679

1.030-14NGO-LH-EXT (Tipped Nipple)



CGA 680

1.045-14NGO-RH-INT



CGA 695

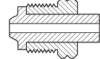
1.045-14NGO-LH-INT

CGA 701

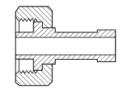
1.103-14NGO-RH-EXT

CGA CONNECTIONS (continued)

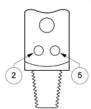
CGA 702

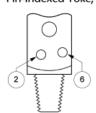

1.125-14NGO-RH-INT

CGA 703 1.125-14NGO-LH-INT

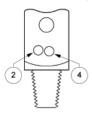


CGA 705

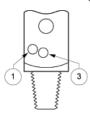

1.125-14UNS-2A-RH-EXT


CGA 870

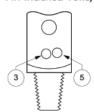
Pin-Indexed Yoke, Pins 2-5


CGA 880

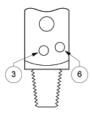
Pin-Indexed Yoke, Pins 2-6


CGA 890

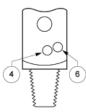
Pin-Indexed Yoke, Pins 2-4


CGA 900

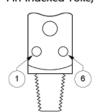
Pin-Indexed Yoke, Pins 1-3


CGA 910

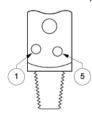
Pin-Indexed Yoke, Pins 3-5


CGA 920

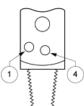
Pin-Indexed Yoke, Pins 3-6


CGA 930

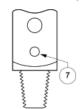
Pin-Indexed Yoke, Pins 4-6


CGA 940

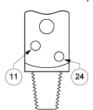
Pin-Indexed Yoke, Pins 1-6


CGA 950

Pin-Indexed Yoke, Pins 1-5


CGA 960

Pin-Indexed Yoke, Pins 1-4


CGA 965

Pin-Indexed Yoke, Pin No. 7

CGA 973

Pin-Indexed Yoke, Pins 11-24

Applied Gas, Inc. I